
SPIDERGL: A GRAPHICS LIBRARY FOR 3D WEB APPLICATIONS

M. Di Benedetto*, M. Corsini, R. Scopigno

Visual Computing Lab, ISTI - CNR

KEY WORDS: Web Applications, Web Graphics, WebGL, Virtual Museums, Real-Time Graphics, Rich Multimedia Content

ABSTRACT:

The recent introduction of the WebGL API for leveraging the power of 3D graphics accelerators within Web browsers opens the

possibility to develop advanced graphics applications without the need for an ad-hoc plug-in. There are several contexts in which

this new technology can be exploited to enhance user experience and data fruition, like e-commerce applications, games and, in

particular, Cultural Heritage. In fact, it is now possible to use the Web platform to present a virtual reconstruction hypothesis of

ancient pasts, to show detailed 3D models of artefacts of interests to a wide public, and to create virtual museums.

We introduce SpiderGL, a JavaScript library for developing 3D graphics Web applications. SpiderGL provides data structures and

algorithms to ease the use of WebGL, to define and manipulate shapes, to import 3D models in various formats, and to handle

asynchronous data loading. We show the potential of this novel library with a number of demo applications and give details about its

future uses in the context of Cultural Heritage applications.

1. INTRODUCTION

1.1 Computer Graphics and the World Wide Web

The delivery of 3D content via the Web platform started to be a

topic of interest since the graphics hardware of commodity

personal computers became enough powerful to handle non-

trivial 3D scenes in real-time. Many attempts have been done to

allow the user of standard Web documents to directly access

and interact with three-dimensional objects or, more generally,

complex environments from within the Web browser.

Historically, these solutions were based on software

components in the form of proprietary and often non-portable

browser plug-ins. The lack of a standardized API did not

allowed Web and Computer Graphics (CG) developers to rely

on a solid and widespread platform, thus losing the actual

benefits that these technologies could provide.

In the same period of time in which GPUs showed a tremendous

increase in performances and capabilities, the evolution of the

technology behind Web browsers allowed interpreted languages

such as JavaScript to perform quite efficiently in general

purpose computations, thanks to novel just-in-time (JIT)

compilers. Thus, on one side, the hardware and software

components have reached a level of efficiency and

performances which could fit the requirements for high-quality

and interactive rendering of 3D content to be visualized, on the

other the increase of bandwidth for accessing the Internet

allowed large volumes of data to be transferred worldwide in a

relatively short amount of time.

In this scenario, the need for a standardized computer graphics

API became a high-priority problem to be solved. In fact, in late

2009, the Khronos Group (KHRONOS GROUP, 2009)

officialised a new standard, WebGL (KHRONOS-WEBGL,

2009), which aims at harnessing the power of graphics

hardware directly within Web pages through a JavaScript

interface. WebGL is an API specification designed to closely

match the OpenGL|ES 2.0 specifications (KHRONOS-

OPENGLES, 2009), with some modifications which make the

API more close in look-and-feel to a JavaScript developer. On

the other side, as web pages which use WebGL are freely

accessible from every potential Web client, the new

specification impose a series of restrictions to comply with a

more strict security policy.

Although this scripting language cannot be considered as

performing as a compiled one like C++, the tendency of

delegating the most time-consuming parts of a CG algorithm to

the graphics hardware helps mitigating the performance gap.

1.2 Leveraging the new Web Technologies

Thanks to the combination of hardware and software

capabilities and performances, coupled with a high-speed data

channel, it is nowadays possible to effectively and natively

handle real-time 3D graphics within Web pages. In particular,

by exploiting the asynchronous features provided by the

runtime environment of the Web browser, it is possible to

manage large datasets in a natural out-of-core fashion. The

creation of fast and reliable visualization algorithms that allow

the user to explore huge environments (like Google Earth

(Google Inc., 2010) and Bing Maps (Microsoft Corporation,

2010)) implies that multiresolution algorithms should be

developed with network streaming in mind, both in terms of

caching mechanisms and the actual representation of a data

packet. Alongside, it is easy to see how the new WebGL 3D

technology will bring closer web developers, which are more

and more interested in learning 3D graphics and CG developers,

which will try to deploy their algorithms to less powerful

platforms.

The question is now what still separates a compiled C++ from a

JavaScript application with respect to CG algorithms. One

obvious answer is execution speed, but there are other gaps to

be filled:

- Asynchronous content loading: many CG algorithms,

especially when dealing with multiresolution datasets, make

intensive use of multithreading for asynchronous (down)loading

of textures or geometry data from different cache levels. This is

necessary to avoid the application to freeze while waiting for a

texture to be loaded from RAM, disk or even a remote database

to GPU. On the other hand JavaScript still does not officially

support multithreaded execution.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

467

- Shape data loading from file: there are many file formats for

3D models and as many C++ libraries to load them (CGAL

Project, Visual Computing Lab, RTWH). JavaScript includes a

series of predefined types of objects for which the standard

language bindings expose native loading facilities (i.e. the

Image object), but such bindings for 3D models have yet to

come.

- Math: linear algebra algorithms for 3D points and vectors are

very common tools for the CG developer, and a large set of

dedicated libraries exists for C++ and other languages.

Although many JavaScript demos for mathematical algorithms

can be found just browsing the Web, a structured library with

the specific set of operations used in CG is still missing.

- WebGL wrapping: the WebGL specification is very similar

to OpenGL|ES 2.0, which means that there are significant

changes with respect to OpenGL are, for example there are no

matrix or attribute stacks and there is no immediate mode.

Although these choices comply with the bare-bones philosophy

of OpenGL|ES 2.0, they also imply incompatibility even with

OpenGL 3.0, which, for example, still provides matrix stack

operations.

In this paper we present SpiderGL, a JavaScript library designed

to fill these gaps: it extends JavaScript by including geometric

data structures and algorithms and wraps their implementation

towards WebGL. In particular, SpiderGL was designed keeping

in mind three fundamental qualities:

- Efficiency: with JavaScript and WebGL, efficiency is not only

a matter of asymptotic bounds on the algorithms, but the ability

to find the most efficient mechanism to implement, for example,

asynchronous loading or parameters passing to the shader

programs, without burdening the CPU with respect to a bare

bone implementation;

- Simplicity and Short Learning Time: users should be able to

reuse as much as possible of their former knowledge on the

subject and take advantage of the library quickly. For this

reason SpiderGL carefully avoids over-abstraction: almost all of

the function names in SpiderGL have a one to one

correspondence with either OpenGL or GLU commands (e.g.

the SpiderGL function sglLookAt for setting up the camera pose

matrix), or with geometric/mathematics entities (e.g.

SglSphere3, SglMeshJS).

- Flexibility: SpiderGL does not try to hide native WebGL

functions; instead it provides higher level functionalities that

fulfil the most common needs of the CG developer, who can use

SpiderGL and WebGL calls almost seamlessly.

2. RELATED WORK

2.1 3D Graphics and the Web

The delivery of 3D content through the WWW comes with a

considerable delay with respect to other digital media such as

text, still images, videos and sound. Just like it already

happened for commodity platforms, 3D Computer Graphics is

the latest of the abilities acquired by the Web browsers. The

main reason for this delay is likely the higher requirements for

3D graphics in terms of computational power. In the following

we summarize the technologies that have been developed over

the years.

The Virtual Reality Modeling Language (VRML) (Ragget,

1995) (then superseded by X3D (Brutzmann and Daly, 2007))

was proposed as a text based format for specifying 3D scenes in

terms of geometry and material properties, while for the

rendering in the Web browser it is required the installation of a

platform specific plug-in.

Java Applets are probably the most practiced method to add

custom software components, not necessarily 3D, in a Web

browser. The philosophy of Java applets is that the URL to the

applet and its data are put in the HTML page and then executed

by a third part component, the Java Virtual Machine (JVM).

The implementation of the JVM on all the operating systems

made Java applets ubiquitous and the introduction of binding to

OpenGL such as JOGL (JOGL) added control on the 3D

graphics hardware.

A similar idea lies behind the ActiveX (ACTIVEX) technology,

developed by Microsoft since 1996. Unlike Java Applets,

ActiveX controls are not byte code but dynamic linked

Windows libraries which share the same memory space as the

calling process (i.e. the browser), and so they are much faster to

execute.

These technologies allow incorporating 3D graphics in a Web

page but they all do it by handling a special element of the page

itself with a third party component. More recently, Google

started the development of a 3D graphics engine named O3D

(Google Labs, 2009). O3D is also deployed as a plug-in for

browsers, but instead of a black-box, non programmable

control, it integrates into the browser itself, extending its

JavaScript with 3D graphics capabilities relying both on

OpenGL and DirectX. O3D is scene-graph-based and supplies

utilities for loading 3D scenes in several commonly used

formats.

2.2 WebGL Libraries

WebGL (KHRONOS-WEBGL, 2009) is an API specification

produced by the Khronos Group (KHRONOS GROUP, 2009)

and, as the name suggests, defines the JavaScript analogous of

the OpenGL API for C++. WebGL closely matches OpenGL|ES

2.0 and, most important, uses GLSL as the language for shader

programs, which means that the shader core of existent

applications can be reused for their JavaScript/WebGL version.

Since WebGL is a specification, it is up to the web browsers

developer to implement it. At the time of this writing it is

supported in the most used web browsers (Firefox, Chrome,

Safari), and a number of JavaScript libraries are being

developed to provide higher level functionalities to create 3D

graphics applications.

For example WebGLU (Benjamin DeLillo, 2009) provides

wrappings for placing the camera in the scene or for creating

simple geometric primitives, other libraries such as GLGE (Paul

Brunt, 2010) or SceneJS (Lindsay Kay, 2009) uses WebGL for

implementing a scene graph based rendering and animation

engines.

3. THE SPIDERGL GRAPHICS LIBRARY

Most of the current JavaScript graphics libraries implement the

scene graph paradigm. Although scene graphs can naturally

represent the idea of a “scene”, they also force the user to resort

to complex schemes whenever more control over the execution

flow is needed. There are several situations in which fixed

functionalities implemented by scene graph nodes cannot be

easily combined to accomplish the desired output, thus

requiring the developer to alter the standard behaviour, typically

by deriving native classes and overriding their methods or, in

some cases, by implementing new node types. In these cases, a

procedural paradigm often represents a more practical choice.

Also, scene graphs contain a large codebase to overcome the

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

468

limitations of strongly typed imperative programming

languages, which is no more required in dynamic languages

such as JavaScript.

Figure 1. SpiderGL Library Architecture.

3.1 Library Architecture

SpiderGL is composed of the following five modules,

distinguished by different colours in Figure 1:

- MATH: Math and Geometry utilities. Linear algebra objects

and functions, as well as geometric entities represent the base

tools for a CG programmer.

- GL: Access to WebGL functionalities. The GL module

contains a low-level layer, managing low-level data structures

with no associated logic, and a high-level layer, composed of

wrapper objects, plus a series of orthogonal facilities.

- MESH: 3D model definition and rendering. This module

provides the implementation of a polygonal mesh (SglMeshJS),

to allow the user to build and edit 3D models, and its image on

the GPU side (SglMeshGL). SpiderGL handles the construction

of a SglMeshGL object from a SglMeshJS.

- ASYNC: Asynchronous Content Loading. Request objects,

priority queues and transfer notifiers help the programmer to

implement the asynchronous loading of data.

- UI: User Interface. A GLUT-like framework and a series of

typical 3D manipulators allows a quick and easy setup of the

web page with 3D viewports and provide effective management

of user input.

By combining the core functionalities of each module,

SpiderGL offers a series of practical and efficient solutions to

implement the most common graphics tasks, described in the

following.

Space-Related Structures and Algorithms

An important part at the foundation of a 3D graphics library

comprises standard geometric objects, as well as space-related

algorithms. SpiderGL offers a series of classes representing

such kind of objects, like rays for intersection testing, infinite

planes, spheres and axis aligned boxes, coupled with distance

calculation and intersection tests routines.

Hierarchical Frustum Culling

When operating over a network, it is reasonable to assume that

the content retrieval has a consistent impact on the overall

performance. Since multimedia context began to be widely used

in web documents, it was clear that a sort of multiresolution

approach should have to be implemented to compensate for the

transmission lags, giving the user a quick feedback, even if at a

lower resolution (i.e. progressive JPEG and PNG). Following

this principle, geometric Level-Of-Detail (LOD) techniques are

used to implement a hierarchical description of a three-

dimensional scene, where coarse resolution data is stored in the

highest nodes of a tree-like structure while full resolution

representation is available at the leaf level. To ease the use of

hierarchical multiresolution datasets, SpiderGL provides a

special class, SglFrustum, which contains a series of methods

for speeding up the visibility culling process and projected error

calculation for hierarchical bounding volumes hierarchies.

Matrix Stack

Users of pre-programmable (fixed pipeline) graphics libraries

relied on the so called transformation matrix stacks for a logical

separation among the projection, viewing and modelling

transformations, and for a natural implementation of

hierarchical relationships in composite objects through matrix

composition.

Even if this has proven a widely used pattern, it no longer exists

since version 2.0 of OpenGL|ES (it was claimed that its

introduction in the specifications would have violated the

principle of a bare-bones API). We thought that this important

component was indeed essential in 3D graphics, so we

introduced the SglMatrixStack class, which keeps track of a

stack of 4x4 transformation matrices with the same

functionalities of the OpenGL matrix stack. Moreover, the

SglTransformStack comprises three matrix stacks (projection,

viewing and modelling) and represents the whole

transformation chain, offering utility methods to compute

viewer position, viewing direction, viewport projection of

model coordinates to screen coordinates and the symmetric

unprojection. Note that, for practicality of use, we decided to

have the modelling and viewing transformation stacks

separated, contrarily to the single OpenGL ModelView stack.

3.2 Managing 3D Meshes

One of the fundamental parts of a graphics library consists of

data structures for the definition of 3D objects (meshes) and

their rendering. As in many libraries for polygonal meshes,

SpiderGL encodes a mesh as a set of vertices and connectivity

information. Following the philosophy of WebGL, a vertex can

be seen as a bundle of data, storing several kind of quantities

such as geometric (position, surface normal), optical (material

albedo, specularity) or even custom attributes. The connectivity

describes how these vertices should be connected to form

geometric primitives, such as line segments or triangles.

As the representation of meshes is tightly related to their

intended use, SpiderGL supplies two different data structures:

the first one, SglMeshJS, resides in client scope, i.e. in system

memory, where it can be freely accessed and modified within

the user script; the other is SglMeshGL, which is the image of a

mesh in the GPU memory under the form of WebGL vertex and

index buffer objects. Crucial for memory and execution

efficiency is how the vertex set and the connectivity information

is laid out; in the following paragraphs we will describe our

solution, mainly dictated by the JavaScript language and the

WebGL execution model.

Vertices Memory Layout

There are two main data layouts which can be used to store

vertex data: array-of-structs or struct-of-arrays.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

469

In the first case, a vertex is represented as an object containing

all the needed attributes: the vertex storage thus consists of an

array of such vertex objects. In the second case, an array is

created for each vertex attribute: in this case the vertex storage

is a single object whose fields are arrays of attributes, where a

vertex object is extracted by selecting corresponding entry in

each array.

SpiderGL adopts the struct-of-arrays layout for two reasons:

first, JavaScript runtime performs more efficiently when

working with homogeneous arrays of numbers rather than

arrays of generic object references; second, adding and

removing attributes is easily accomplished. In a similar way, the

GPU-side mesh (SglMeshGL) stores its vertices with a

dedicated vertex buffer object (VBO) for each attribute.

Connectivity Memory Layout

The connectivity can be implicitly derived from the order in

which vertices are stored or, more frequently, explicitly

described with a set of vertex indices. In SpiderGL it is possible

to represent both of them with, respectively, array primitive or

indexed primitive streams.

A SpiderGL mesh may contain more than one primitive stream;

for example it may contain a primitive stream for the triangles

and one for the edges in order to render the object in a filled or

wireframe mode; the main reason behind this choice is that

OpenGL|ES 2.0 (and thus WebGL) specifications does not

contain any routine to select the mode in which source

geometric primitives should be rasterized. For example, such a

routine (known in desktop OpenGL as glPolygonMode) could

be able to setup the rasterizer in order to draw just the edges of

a triangle primitive.

Overcoming WebGL Limitations

When using indexed primitives in WebGL, the native type for

the elements in the index array can be either a 8- or a 16-bit

unsigned integer; thus, the maximum addressable vertex has

index 65536. SpiderGL automatically overcomes this limitation

by splitting the original mesh into smaller sub--meshes. In order

not to burden the user with special cases when converting an

SglMeshJS to its renderable representation, we introduced the

packed-indexed primitive stream for SglMeshGL, which

transparently keeps track of sub-meshes bounds without

introducing additional vertex or index buffers.

Rendering

In WebGL the rendering process involves the use of shader

programs, vertex buffers and, often, index buffers and textures.

Central to the graphics pipeline is the concept of binding points,

that is, named input sites to which resources are attached and

from which pipeline stages fetch data. To ease the connection

between mesh attributes and shader attributes, and to provide an

efficient rendering process, SpiderGL provides the

SglMeshGLRenderer class. It ensures that the minimum amount

of work is demanded to the WebGL implementation, while

exhibiting a simple interface even for complex tasks.

4. USING SPIDERGL

At the time of writing, the WebGL specification is in its final

draft version and it is implemented in the experimental version

of major web browsers. We successfully tested our library with

the latest builds of the most common web browsers on several

desktop systems.

The results presented here have been run on the Chromium web

browser on a Windows Vista system with Intel i7 920

processor, 3 GB RAM, 500 GB Hard Drive and an NVIDIA

GT260 graphics board with screen vertical synchronization

disabled. The collected results should be analyzed by

considering that a minimal HTML/JS page that only clears the

color buffer reaches the limit of exactly 250 frames per seconds;

we suspect that some kind of temporal quantization occurs in

the browser event loop.

4.1 Standard CG Algorithms and Data Issues

As noted in Section 2.2, WebGL can be considered as a one-to-

one mapping of OpenGL|ES 2.0 functions to a JavaScript API:

this means that not all the functionality in even not-so-recent

versions of standard OpenGL is available to the developer.

Shadow Mapping: the first example consists of rendering a

100K triangles mesh of a 3D-scanned artefact, using Phong

lighting model and a 1024x1024 shadow map (see Figure 2),

which can be done at full framerate (250 FPS). It can be noted

how the use of projected shadows, as well as self shadows, can

greatly enhance the perception of spatial relationships, both at

the scene level (among different objects) and at the object level

(model features).

Figure 2. Shadow mapping algorithm enhances space

perception. Here it is shown a 100K triangles mesh obtained

from a 3D scan of a real artefact.

Large Meshes: when dealing with virtual replicas of real

objects, among the most valuable attributes of interest for the

Cultural Heritage is the ability to be as close as possible to the

real measurements. That is, a large amount of geometric data is

needed to represent the virtual 3D object. From the point of

view of a WebGL visualization application, this translates in the

need for handling an amount of vertices that is far beyond the

system capabilities.

To highlight the capabilities of the packed-indexed primitive

stream (see Section 3.2), Figure 3 shows a 3D scan of

Michelangelo's David statue composed of 1M triangles.

Caching: the general data flow and cache hierarchy used in

compiled remote applications (remote online repository, disk,

system RAM and video RAM) cannot be explicitly

implemented in web application due to limitations imposed by

the restrictive permissions policy adopted for security reasons

by web browsers; for example, it is not possible to create and

write files in the local file system. This means that we can not

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

470

explicitly implement the disk cache stage. In reality, even if we

will not have explicit control over disk usage and cache eviction

policy, by using standard Image and XmlHttpRequest objects

we will automatically take advantage of the caching

mechanisms implemented by the browser itself. In fact, every

standard web browser caches recently transferred data in the

local file system (and even system RAM), thus transparently

providing a disk cache stage.

Figure 3. A zoomed view of the rendering of Michelangelo’s

David statue.

The model outreaches the maximum value for vertex indices

and is thus automatically subdivided into smaller chunks,

highlighted by different colors (see Figure 4).

The performances here range very inconstantly from 90 to 140

FPS, with peaks of 250. This is probably due to the way the

timer event is scheduled by the browser.

Figure 4. The 1M triangles model is automatically subdivided

into sub-chunks (highlighted by color) to be rendered with

WebGL.

4.2 Large Datasets on the Web

The large availability of geometric and color data, as well as

network connections able to transfer up to several megabytes of

data per second, impose a rendering library to be designed to

maximize the performances in those areas which are typical of

multiresolution rendering algorithms. The need for a

multiresolution approach comes into play whenever we want to

show datasets that are too large to be handled with respect to

the hardware capabilities: in particular, the resources which

mainly influence the output of a multiresolution renderer are

System and Video RAM speed and amount, as well as the raw

CPU and GPU performances.

Terrain Models

To show how the algorithms and data structures in SpiderGL

can be easily used to integrate virtual 3D exploration inside web

pages, we implemented a simple but effective multiresolution

terrain viewer (see Figure 5). Our approach consists of an

offline pre-processing step which creates a multiresolution

representation from a discrete elevation and color image, and an

online out-of-core rendering algorithm.

As in other existing map-based web applications like Google

Maps (Google Inc., 2010), the multiresolution dataset is

organized in tiles. More in detail, in the construction phase, the

elevation map is first embedded on a quad-tree with user-

defined depth. The depth of the tree determines the dimension

of the tiles in which the input map is first partitioned. In fact,

such tiles correspond to the 2D projection of the bounding box

of the leaf nodes.

We build the multiresolution dataset in a bottom-up fashion by

first assigning the tile images to their leaf nodes. Then, tiles for

internal nodes are generated by assembling the four tiles

assigned to the node children in a single square image of twice

the dimensions and then down-sampled by a factor of two. This

means that all the tiles have the same dimension and, in

particular, tiles assigned to nodes at level i have half the linear

resolution of the ones at level i+1. To ensure that the border of

adjacent tiles match exactly to avoid cracks and discontinuities,

the square regions of the elevation tiles are expanded by one

pixel on each side. This is also done for the input color map to

allow correct color interpolation at borders when bilinear

filtering is used. The output of the preprocessing step are two

texture images for each node: a RGBA image stores the surface

color (RGB channels) and the height map (Alpha channel), and

a RGB image for normal maps.

Once the nodes to be rendered are identified by the

multiresolution algorithm, the rendering process draws each tile

by using a vertex shader which performs displacement mapping

on a regular triangle grid.

Figure 5. Remote multiresolution visualization of a large terrain

model.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

471

Urban Models

To show the real potential of WebGL, we implemented a

multiresolution renderer of urban environments using a special

data structure called BlockMap (Di Benedetto et al., 2009). One

of the main advantages of this novel representation is that it can

be directly encoded into plain 32-bit RGBA images, implying

that we can use the standard tools natively provided by

JavaScript (namely, the Image, Canvas and WebGLContext

objects) to fetch data from remote repositories and upload it to

the graphics hardware. Another advantage is that the simplicity

of the rendering algorithm and, more importantly, the use of

simple instructions in the BlockMap shaders, allow us to write

efficient JavaScript code and exploit the actual power of

WebGL without any modification.

Figure 6. The Ray-Casted BlockMap technique is implemented

in SpiderGL for real-time exploration of urban models.

5. VIRTUAL MUSEUMS

The possibility to use the processing capabilities of modern

graphics hardware directly within web pages allows the

development of new kind of virtual exploration software that

can be seamlessly integrated in existing remote digital libraries.

In particular, in conjunction with the growth in the availability

of large 3D-scanned models and high resolution photographs,

the new WebGL standard can be used to create interactive,

high-quality virtual museums that can be accessed through the

Web.

In the following we will describe two case-study that show how

the exploration and rendering modules of a virtual museum can

be efficiently implemented.

5.1 Relightable Images with Polynomial Texture Maps

Although WebGL is designed primarily for three-dimensional

graphics, the possibility to use the power of the graphics

hardware at pixel processing level makes it an attractive

candidate even for complex 2D shading operations. In this case,

source images are handled under the form of texture maps, and

per--pixel operations are executed by fragment shaders. As an

effective use of these capabilities, we used the multiresolution

framework to implement a Polynomial Texture Map (PTM)

viewer. A Polynomial Texture Map (Malzbender, 2004;

Dellepiane et al. 2006) is, in brief, a discrete image where each

pixel encodes a minimal reflection function which depends on

the light direction. This allows the user to interactively relight

the image to facilitate visual inspection of fine details. To

display such kind of image remotely, as in a streaming terrain

viewer, a quad-tree is built from the original PTM and, at

rendering time, a fragment shader computes the current colour

as a function of the light position, passed as a global uniform

variable.

In the example we developed, a large PTM image (2930x2224

pixels, for a total of 56 Mbytes), shown in Figure 7, is

progressively streamed and refined according to the zoom level.

The user can change the position of the virtual light source by

simply moving the mouse cursor. At each movement, the

illumination contribution is recomputed in real-time and the

relighted image is shown.

Figure 7. A Polynomial Texture Map is visualized in a multi-

resolution fashion. As the user moves the mouse to change the

virtual light source direction, the illumination contribution is

recalculated and shown in real-time.

This technique is mainly used for object that exhibits a main 2D

structure, such as bas-relief. The net effect is that the virtual

exploration provides a more immersive experience, allowing to

examine the objects under different lighting conditions.

5.2 MeShade: a 3D Content Authoring Tool

While there are very large repositories for pictures, video or

audio files, a web site like Flickr or YouTube for 3D models has

yet to come. Up to now there are a few repositories of 3D

models made by human modellers that one can browse and also

few examples of repository of 3D scanned models (Stanford

Computer Graphics Laboratory, 2004; Falcidieno, 2004).

However it is likely that this will change quickly in the near

future, both for the increasingly ease of producing 3D models

by automatic reconstruction means (for example by cheaper and

cheaper laser scanners (NEXTENGINE, 2010) or by digital

photography (Vergauwen and Van Gool, 2006)) and for the

ability to use 3D graphics hardware acceleration in the Web

browser.

MeShade is a Web application written with SpiderGL that

allows the user to load a 3D model and images, create a custom

shader program (like one can do using, for example, AMD

RenderMonkey (AMD, 2010), although at the present with a

more limited number of functionalities), and export JSON and

HTML code snippets to create a web page which will provide

interactive visualization of the mesh using the custom shader.

The user interface of MeShade consists of several collapsible

and movable panels (see Figure 8), representing the most

important parts of a shader composer application.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

472

Apart from the interactive preview viewport which displays the

loaded 3D model with the current material, the user is provided

with text areas for editing the source code of the vertex and the

fragment shaders.

Figure 8. The MeShade user interface allows for the online

editing of the material shader source code. When finished, a

JSON script is generated to be included in remote repositories.

The user can validate the correctness of the shaders by using the

Validate button which will show the compiler output (warning

and error messages) in the log area. The Apply button will apply

the shader program to the 3D model.

The way MeShade handles program uniforms and vertex shader

attributes is based on predefined names with specific semantic

and user-defined input values. In particular:

- every vertex attribute of the mesh is made available to the

vertex shader by declaring it with a predefined prefix, i.e. vertex

shader attribute a_position will be mapped to mesh vertex

attribute stream named position;

- a series of fundamental and commodity values are exposed via

predefined uniform names, like transformation matrices, model

bounding box and so on;

- whenever a non-predefined uniform is found, an edit form is

added to the HTML DOM which allows for direct editing of the

scalar or vector values; the user interface for editing depends on

the type of the uniform variable;

- an image load form is created for every texture sampler

uniform; although texture samplers are standard uniforms in the

GLSL language, they are grouped in a separate panel to reflect

the way SpiderGL handles textures.

The 3D model and the texture images are loaded by specifying

their URL and then pressing the corresponding Load button.

The interface also contains a list of all available predefined

uniforms and mesh vertex attributes. The latter ones are updated

every time a model is loaded.

Once the user has reached a satisfactory result, he/she can ask

MeShade to generate the code to embed the 3D model rendered

with the program shader just created within a web page, by

pressing the Generate Code button. MeShade will generate two

code fragments, JSON and HTML, which can be copied to new

or existing files.

The JSON section contains the geometry and images locations,

as well as the shaders source code and uniform values, and thus

serves as a scene description file. On the other side, the HTML

code contains all the HTML script tags to be pasted into

existing pages in order to access and visualize the scene.

We decided to generate code snippets rather than a complete

HTML page because repository designers are supposed to use

their own graphical style throughout their web sites: having

only a very few lines of code to embed inside web pages allows

for a variety of design choices. Moreover, separating the JSON

scene description code allows for sharing the same scene among

several web pages without code replication.

6. CONCLUSIONS

The work presented in this paper shows the potentiality of a

WebGL-based application and the new possibilities opened by

the availability of the modern graphics hardware features within

the Web browsers. The proposed SpiderGL library made easy

the coding of complex Computer Graphics applications by

giving the developer the necessary tools for mathematical

entities, 3D models management, data retrieval, and, efficient

and fully-configurable rendering mechanisms. Exploiting these

new Web technologies in the field of Cultural Heritage will

allow, in the near future, to create remote virtual museums able

to provide immersive and detailed exploration applications not

confined to small objects but including very detailed artefact

and even large environments like reconstructions of ancient

cities.

Future Work

Beside the work of upgrading and extending SpiderGL, which

is obviously a daily activity, we envisage a promising direction

of work in the automatization of the process of converting large

databases of scanned objects to Web repositories. The problems

are mainly related to the typical large size of scanned objects

and to the way to optimize them for a remote visualization.

Although there are many available tools to reduce the number

of polygons in a mesh, to parameterize it and to recover almost

the full detail by bump mapping techniques (just to mention a

viable, not unique, optimization pipeline), the whole process

still requires a skilled user to be done.

REFERENCES

ACTIVEX, “Microsoft ActiveX Controls”, http://msdn.microsoft.com/

AMD, “Render Monkey”, 2010.

http://ati.amd.com/developer/rendermonkey/

Bianca Falcidieno, “AIM@SHAPE Project Presentation”, IEEE

Computer Society, pp. 329-338, 2004.

Paul Brunt, “GLGE: WebGL for the lazy”, 2010, http://www.glge.org/

Don Brutzmann and Leonard Daly, “X3D: Extensible 3D Graphics for

Web Authors”, Morgan Kaufmann, 2007.

CGAL Project, "CGAL: Computational Geometry Algorithms

Library", http://www.cgal.org/

M. Dellepiane, M. Corsini, M. Callieri, R. Scopigno, “High Quality

PTM Acquisition: Reflection Transformation Imaging for Large

Objects”, 7th International Symposium on Virtual Reality, Archaeology

and Cultural Heritage (VAST2006), pp. 179-186, 2006.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

473

Benjamin DeLillo, “WebGLU: A utility library for working with

WebGL”, 2009, http://webglu.sourceforge.org/

M. Di Benedetto, P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton

and R. Scopigno, “Interactive Remote Exploration of Massive

Cityscapes”, The 10th International Symposium on Virtual Reality,

Archaeology and Cultural Heritage VAST (2009), pp. 9-16, 2009.

Google Labs, "O3D", 2009. http://code.google.com/apis/o3d/

Google Inc. , “Google Maps”, 2010. http://maps.google.com/

Google Inc., “Google Earth”,http://www.google.com/earth/index.html

JOGL, ”JOGL Java Binding for the OpenGL API”,

http://kenai.com/projects/jogl/pages/Home/

KHRONOS GROUP, "Khronos: Open Standards for Media Authoring

and Acceleration", 2009. http://www.khronos.org/

KHRONOS-WEBGL, ”WebGL – Opengl|ES 2.0 for the Web.”, 2009.

http://www.khronos.org/webgl/

KHRONOS-OPENGLES, “OpenGL|ES - The Standard for Embedded

Accelerated 3D Graphics", 2009. http://www.khronos.org/opengles/

Lindsay Kay, “SceneJS”, 2009. http://www.scenejs.com/

T. Malzbender, “Enhancement of Shape Perception by Surface

Reflectance Transformation”, Vision, Modeling, and Visualization,

2004.

Microsoft Corporation , “Bing Maps”, www.bing.com/maps

NEXTENGINE, “NextEngine”, 2010. http://www.nextengine.com/

D. Raggett, "Extending WWW to support Platform Independent

Virtual Reality", Technical Report, 1995.

RWTH, "OpenMesh: Visualization and Computer Graphics Library",

http://www.openmesh.org/

Stanford Computer Graphics Laboratory, “Stanford Repository”, 2000.

http://graphics.stanford.edu/data/3Dscanrep/

M. Vergauwen and L. Van Gool, “Web-Based 3D Reconstruction

Service", Machine Vision Applications, vol. 17, pp. 411-426, 2006.

Visual Computing Lab, "VcgLib: Visualization and Computer

Graphics Library", http://vcg.sourceforge.net

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

474

