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ABSTRACT: 

 

The recent introduction of the WebGL API for leveraging the power of 3D graphics accelerators within Web browsers opens the 

possibility to develop advanced graphics applications without the need for an ad-hoc plug-in. There are several contexts in which 

this new technology can be exploited to enhance user experience and data fruition, like e-commerce applications, games and, in 

particular, Cultural Heritage. In fact, it is now possible to use the Web platform to present a virtual reconstruction hypothesis of 

ancient pasts, to show detailed 3D models of artefacts of interests to a wide public, and to create virtual museums. 

We introduce SpiderGL, a JavaScript library for developing 3D graphics Web applications. SpiderGL provides data structures and 

algorithms to ease the use of WebGL, to define and manipulate shapes, to import 3D models in various formats, and to handle 

asynchronous data loading. We show the potential of this novel library with a number of demo applications and give details about its 

future uses in the context of Cultural Heritage applications. 

 

1. INTRODUCTION 

1.1 Computer Graphics and the World Wide Web 

The delivery of 3D content via the Web platform started to be a 

topic of interest since the graphics hardware of commodity 

personal computers became enough powerful to handle non-

trivial 3D scenes in real-time. Many attempts have been done to 

allow the user of standard Web documents to directly access 

and interact with three-dimensional objects or, more generally, 

complex environments from within the Web browser. 

Historically, these solutions were based on software 

components in the form of proprietary and often non-portable 

browser plug-ins. The lack of a standardized API did not 

allowed Web and Computer Graphics (CG) developers to rely 

on a solid and widespread platform, thus losing the actual 

benefits that these technologies could provide. 

In the same period of time in which GPUs showed a tremendous 

increase in performances and capabilities, the evolution of the 

technology behind Web browsers allowed interpreted languages 

such as JavaScript to perform quite efficiently in general 

purpose computations, thanks to novel just-in-time (JIT) 

compilers. Thus, on one side, the hardware and software 

components have reached a level of efficiency and 

performances which could fit the requirements for high-quality 

and interactive rendering of 3D content to be visualized, on the 

other the increase of bandwidth for accessing the Internet 

allowed large volumes of data to be transferred worldwide in a 

relatively short amount of time. 

In this scenario, the need for a standardized computer graphics 

API became a high-priority problem to be solved. In fact, in late 

2009, the Khronos Group (KHRONOS GROUP, 2009) 

officialised a new standard, WebGL (KHRONOS-WEBGL, 

2009), which aims at harnessing the power of graphics 

hardware directly within Web pages through a JavaScript 

interface. WebGL is an API specification designed to closely 

match the OpenGL|ES 2.0 specifications (KHRONOS-

OPENGLES, 2009), with some modifications which make the 

API more close in look-and-feel to a JavaScript developer. On 

the other side, as web pages which use WebGL are freely 

accessible from every potential Web client, the new 

specification impose a series of restrictions to comply with a 

more strict security policy. 

Although this scripting language cannot be considered as 

performing as a compiled one like C++, the tendency of 

delegating the most time-consuming parts of a CG algorithm to 

the graphics hardware helps mitigating the performance gap. 

 

1.2 Leveraging the new Web Technologies 

Thanks to the combination of hardware and software 

capabilities and performances, coupled with a high-speed data 

channel, it is nowadays possible to effectively and natively 

handle real-time 3D graphics within Web pages. In particular, 

by exploiting the asynchronous features provided by the 

runtime environment of the Web browser, it is possible to 

manage large datasets in a natural out-of-core fashion. The 

creation of fast and reliable visualization algorithms that allow 

the user to explore huge environments (like Google Earth 

(Google Inc., 2010) and Bing Maps (Microsoft Corporation, 

2010)) implies that multiresolution algorithms should be 

developed with network streaming in mind, both in terms of 

caching mechanisms and the actual representation of a data 

packet. Alongside, it is easy to see how the new WebGL 3D 

technology will bring closer web developers, which are more 

and more interested in learning 3D graphics and CG developers, 

which will try to deploy their algorithms to less powerful 

platforms. 

 

The question is now what still separates a compiled C++ from a 

JavaScript application with respect to CG algorithms. One 

obvious answer is execution speed, but there are other gaps to 

be filled: 

- Asynchronous content loading: many CG algorithms, 

especially when dealing with multiresolution datasets, make 

intensive use of multithreading for asynchronous (down)loading 

of textures or geometry data from different cache levels. This is 

necessary to avoid the application to freeze while waiting for a 

texture to be loaded from RAM, disk or even a remote database 

to GPU. On the other hand JavaScript still does not officially 

support multithreaded execution. 
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- Shape data loading from file: there are many file formats for 

3D models and as many C++ libraries to load them (CGAL 

Project, Visual Computing Lab, RTWH). JavaScript includes a 

series of predefined types of objects for which the standard 

language bindings expose native loading facilities (i.e. the 

Image object), but such bindings for 3D models have yet to 

come. 

- Math: linear algebra algorithms for 3D points and vectors are 

very common tools for the CG developer, and a large set of 

dedicated libraries exists for C++ and other languages. 

Although many JavaScript demos for mathematical algorithms 

can be found just browsing the Web, a structured library with 

the specific set of operations used in CG is still missing. 

- WebGL wrapping: the WebGL specification is very similar 

to OpenGL|ES 2.0, which means that there are significant 

changes with respect to OpenGL are, for example there are no 

matrix or attribute stacks and there is no immediate mode. 

Although these choices comply with the bare-bones philosophy 

of OpenGL|ES 2.0, they also imply incompatibility even with 

OpenGL 3.0, which, for example, still provides matrix stack 

operations. 

 

In this paper we present SpiderGL, a JavaScript library designed 

to fill these gaps: it extends JavaScript by including geometric 

data structures and algorithms and wraps their implementation 

towards WebGL. In particular, SpiderGL was designed keeping 

in mind three fundamental qualities: 

- Efficiency: with JavaScript and WebGL, efficiency is not only 

a matter of asymptotic bounds on the algorithms, but the ability 

to find the most efficient mechanism to implement, for example, 

asynchronous loading or parameters passing to the shader 

programs,  without burdening the CPU with respect to a bare 

bone implementation; 

- Simplicity and Short Learning Time: users should be able to 

reuse as much as possible of their former knowledge on the 

subject and take advantage of the library quickly. For this 

reason SpiderGL carefully avoids over-abstraction: almost all of 

the function names in SpiderGL have a one to one  

correspondence with either OpenGL or GLU commands (e.g. 

the SpiderGL function sglLookAt for setting up the camera pose 

matrix), or with geometric/mathematics entities (e.g. 

SglSphere3, SglMeshJS). 

- Flexibility: SpiderGL does not try to hide native WebGL 

functions; instead it provides higher level functionalities that 

fulfil the most common needs of the CG developer, who can use 

SpiderGL and WebGL calls almost seamlessly. 

 

 

2. RELATED WORK 

2.1 3D Graphics and the Web 

The delivery of 3D content through the WWW comes with a 

considerable delay with respect to other digital media such as 

text, still images, videos and sound. Just like it already 

happened for commodity platforms, 3D Computer Graphics  is 

the latest of the abilities acquired by the Web browsers. The 

main reason for this delay is likely the higher requirements for 

3D graphics in terms of computational power. In the following 

we summarize the technologies that have been developed over 

the years. 

The Virtual Reality Modeling Language (VRML) (Ragget, 

1995) (then superseded by X3D (Brutzmann and Daly, 2007))  

was proposed as a text based format for specifying 3D scenes in 

terms of geometry and material properties, while for the 

rendering in the Web browser it is required the installation of a 

platform specific plug-in. 

Java Applets are probably the most practiced method to add 

custom software components, not necessarily 3D, in a Web 

browser. The philosophy of Java applets is that the URL to the 

applet and its data are put in the HTML page and then executed 

by a third part component, the Java Virtual Machine (JVM). 

The implementation of the JVM on all the operating systems 

made Java applets ubiquitous and the introduction of binding to 

OpenGL such as JOGL (JOGL) added control on the 3D 

graphics hardware. 

A similar idea lies behind the ActiveX (ACTIVEX) technology, 

developed by Microsoft since 1996. Unlike Java Applets,  

ActiveX controls are not byte code but dynamic linked 

Windows libraries which share the same memory space as the 

calling process (i.e. the browser), and so they are much faster to 

execute. 

These technologies allow incorporating 3D graphics in a Web 

page but they all do it by handling a special element of the page 

itself with a third party component. More recently, Google 

started the development of a 3D graphics engine named O3D 

(Google Labs, 2009). O3D is also deployed as a plug-in for 

browsers, but instead of a black-box, non programmable 

control, it integrates into the browser itself, extending its 

JavaScript with 3D graphics capabilities relying both on 

OpenGL and DirectX. O3D is scene-graph-based and supplies 

utilities for loading 3D scenes in several commonly used 

formats. 

 

2.2 WebGL Libraries 

WebGL (KHRONOS-WEBGL, 2009) is an API specification 

produced by the Khronos Group (KHRONOS GROUP, 2009) 

and, as the name suggests, defines the JavaScript analogous of 

the OpenGL API for C++. WebGL closely matches OpenGL|ES 

2.0 and, most important, uses GLSL as the language for shader 

programs, which means that the shader core of existent 

applications can be reused for their JavaScript/WebGL version. 

Since WebGL is a specification, it is up to the web browsers 

developer to implement it. At the time of this writing it is 

supported in the most used web browsers (Firefox, Chrome, 

Safari), and a number of JavaScript libraries are being 

developed to provide higher level functionalities to create 3D 

graphics applications. 

For example WebGLU (Benjamin DeLillo, 2009) provides 

wrappings for placing the camera in the scene or for creating 

simple geometric primitives, other libraries such as GLGE (Paul 

Brunt, 2010) or SceneJS (Lindsay Kay, 2009) uses WebGL for 

implementing a scene graph based rendering and animation 

engines. 

 

 

3. THE SPIDERGL GRAPHICS LIBRARY 

Most of the current JavaScript graphics libraries implement the 

scene graph paradigm. Although scene graphs can naturally 

represent the idea of a “scene”, they also force the user to resort 

to complex schemes whenever more control over the execution 

flow is needed. There are several situations in which fixed 

functionalities implemented by scene graph nodes cannot be 

easily combined to accomplish the desired output, thus 

requiring the developer to alter the standard behaviour, typically 

by deriving native classes and overriding their methods or, in 

some cases, by implementing new node types. In these cases, a 

procedural paradigm often represents a more practical choice. 

Also, scene graphs contain a large codebase to overcome the 
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limitations of strongly typed imperative programming 

languages, which is no more required in dynamic languages 

such as JavaScript. 

 

 
Figure 1. SpiderGL Library Architecture. 

 

3.1 Library Architecture 

SpiderGL is composed of the following five modules, 

distinguished by different colours in Figure 1: 

 

- MATH: Math and Geometry utilities. Linear algebra objects 

and functions, as well as geometric entities represent the base 

tools for a CG programmer. 

 

- GL: Access to WebGL functionalities. The GL module 

contains a low-level layer, managing low-level data structures 

with no associated logic, and a high-level layer, composed of 

wrapper objects, plus a series of orthogonal facilities. 

 

- MESH: 3D model definition and rendering. This module 

provides the implementation of a polygonal mesh (SglMeshJS), 

to allow the user to build and edit 3D models, and its image on 

the GPU side (SglMeshGL). SpiderGL handles the construction 

of a SglMeshGL object from a SglMeshJS. 

 

- ASYNC: Asynchronous Content Loading. Request objects, 

priority queues and transfer notifiers help the programmer to 

implement the asynchronous loading of data. 

 

- UI: User Interface. A GLUT-like framework and a series of 

typical 3D manipulators allows a quick and easy setup of the 

web page with 3D viewports and provide effective management 

of user input. 

 

By combining the core functionalities of each module, 

SpiderGL offers a series of practical and efficient solutions to 

implement the most common graphics tasks, described in the 

following. 

 

Space-Related Structures and Algorithms 

An important part at the foundation of a 3D graphics library 

comprises standard geometric objects, as well as space-related 

algorithms. SpiderGL offers a series of classes representing 

such kind of objects, like rays for intersection testing, infinite 

planes, spheres and axis aligned boxes, coupled with distance 

calculation and intersection tests routines. 

 

Hierarchical Frustum Culling 

When operating over a network, it is reasonable to assume that 

the content retrieval has a consistent impact on the overall 

performance. Since multimedia context began to be widely used 

in web documents, it was clear that a sort of multiresolution 

approach should have to be implemented to compensate for the 

transmission lags, giving the user a quick feedback, even if at a 

lower resolution (i.e. progressive JPEG and PNG). Following 

this principle, geometric Level-Of-Detail (LOD) techniques are 

used to implement a hierarchical description of a three-

dimensional scene, where coarse resolution data is stored in the 

highest nodes of a tree-like structure while full resolution 

representation is available at the leaf level. To ease the use of 

hierarchical multiresolution datasets, SpiderGL provides a 

special class, SglFrustum, which contains a series of methods 

for speeding up the visibility culling process and projected error 

calculation for hierarchical bounding volumes hierarchies. 

 

Matrix Stack 

Users of pre-programmable (fixed pipeline) graphics libraries 

relied on the so called transformation matrix stacks for a logical 

separation among the projection, viewing and modelling 

transformations, and for a natural implementation of 

hierarchical relationships in composite objects through matrix 

composition. 

Even if this has proven a widely used pattern, it no longer exists 

since version 2.0 of OpenGL|ES (it was claimed that its 

introduction in the specifications would have violated the 

principle of a bare-bones API). We thought that this important 

component was indeed essential in 3D graphics, so we 

introduced the SglMatrixStack class, which keeps track of a 

stack of 4x4 transformation matrices with the same 

functionalities of the OpenGL matrix stack. Moreover, the 

SglTransformStack comprises three matrix stacks (projection, 

viewing and modelling) and represents the whole 

transformation chain, offering utility methods to compute 

viewer position, viewing direction, viewport projection of 

model coordinates to screen coordinates and the symmetric 

unprojection. Note that, for practicality of use, we decided to 

have the modelling and viewing transformation stacks 

separated, contrarily to the single OpenGL ModelView stack.  

 

3.2 Managing 3D Meshes 

One of the fundamental parts of a graphics library consists of 

data structures for the definition of 3D objects (meshes) and 

their rendering. As in many libraries for polygonal meshes, 

SpiderGL encodes a mesh as a set of vertices and connectivity 

information. Following the philosophy of WebGL, a vertex can 

be seen as a bundle of data, storing several kind of quantities 

such as geometric (position, surface normal), optical (material 

albedo, specularity) or even custom attributes. The connectivity 

describes how these vertices should be connected to form 

geometric primitives, such as line segments or triangles. 

As the representation of meshes is tightly related to their 

intended use, SpiderGL supplies two different data structures: 

the first one, SglMeshJS, resides in client scope, i.e. in system 

memory, where it can be freely accessed and modified within 

the user script; the other is SglMeshGL, which is the image of a 

mesh in the GPU memory under the form of WebGL vertex and 

index buffer objects. Crucial for memory and execution 

efficiency is how the vertex set and the connectivity information 

is laid out; in the following paragraphs we will describe our 

solution, mainly dictated by the JavaScript language and the 

WebGL execution model. 

 

Vertices Memory Layout 

There are two main data layouts which can be used to store 

vertex data: array-of-structs or struct-of-arrays. 
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In the first case, a vertex is represented as an object containing 

all the needed attributes: the vertex storage thus consists of an 

array of such vertex objects. In the second case, an array is 

created for each vertex attribute: in this case the vertex storage 

is a single object whose fields are arrays of attributes, where a 

vertex object is extracted by selecting corresponding entry in 

each array. 

SpiderGL adopts the struct-of-arrays layout for two reasons: 

first, JavaScript runtime performs more efficiently when 

working with homogeneous arrays of numbers rather than 

arrays of generic object references; second, adding and 

removing attributes is easily accomplished. In a similar way, the 

GPU-side mesh (SglMeshGL) stores its vertices with a 

dedicated vertex buffer object (VBO) for each attribute. 

 

Connectivity Memory Layout 

The connectivity can be implicitly derived from the order in 

which vertices are stored or, more frequently, explicitly 

described with a set of vertex indices. In SpiderGL it is possible 

to represent both of them with, respectively, array primitive or 

indexed primitive streams. 

A SpiderGL mesh may contain more than one primitive stream; 

for example it may contain a primitive stream for the triangles 

and one for the edges in order to render the object in a filled or 

wireframe mode; the main reason behind this choice is that 

OpenGL|ES 2.0 (and thus WebGL) specifications does not 

contain any routine to select the mode in which source 

geometric primitives should be rasterized. For example, such a 

routine (known in desktop OpenGL as glPolygonMode) could 

be able to setup the rasterizer in order to draw just the edges of 

a triangle primitive. 

 

Overcoming WebGL Limitations 

When using indexed primitives in WebGL, the native type for 

the elements in the index array can be either a 8- or a 16-bit 

unsigned integer; thus, the maximum addressable vertex has 

index 65536. SpiderGL automatically overcomes this limitation 

by splitting the original mesh into smaller sub--meshes. In order 

not to burden the user with special cases when converting an 

SglMeshJS to its renderable representation, we introduced the 

packed-indexed primitive stream for SglMeshGL, which 

transparently keeps track of sub-meshes bounds without 

introducing additional vertex or index buffers. 

 

Rendering 

In WebGL the rendering process involves the use of shader 

programs, vertex buffers and, often, index buffers and textures. 

Central to the graphics pipeline is the concept of binding points, 

that is, named input sites to which resources are attached and 

from which pipeline stages fetch data. To ease the connection 

between mesh attributes and shader attributes, and to provide an 

efficient rendering process, SpiderGL provides the 

SglMeshGLRenderer class. It ensures that the minimum amount 

of work is demanded to the WebGL implementation, while 

exhibiting a simple interface even for complex tasks. 

 

 

4. USING SPIDERGL 

At the time of writing, the WebGL specification is in its final 

draft version and it is implemented in the experimental version 

of major web browsers. We successfully tested our library with 

the latest builds of the most common web browsers on several 

desktop systems. 

The results presented here have been run on the Chromium web 

browser on a Windows Vista system with Intel i7 920 

processor, 3 GB RAM, 500 GB Hard Drive and an NVIDIA 

GT260 graphics board with screen vertical synchronization 

disabled. The collected results should be analyzed by 

considering that a minimal HTML/JS page that only clears the 

color buffer reaches the limit of exactly 250 frames per seconds; 

we suspect that some kind of temporal quantization occurs in 

the browser event loop. 

 

4.1 Standard CG Algorithms and Data Issues 

As noted in Section 2.2, WebGL can be considered as a one-to-

one mapping of OpenGL|ES 2.0 functions to a JavaScript API: 

this means that not all the functionality in even not-so-recent 

versions of standard OpenGL is available to the developer.  

 

Shadow Mapping: the first example consists of rendering a 

100K triangles mesh of a 3D-scanned artefact, using Phong 

lighting model and a 1024x1024 shadow map (see Figure 2), 

which  can be done at full framerate (250 FPS). It can be noted 

how the use of projected shadows, as well as self shadows, can 

greatly enhance the perception of spatial relationships, both at 

the scene level (among different objects) and at the object level 

(model features). 

 

 
Figure 2. Shadow mapping algorithm enhances space 

perception. Here it is shown a 100K triangles mesh obtained 

from a 3D scan of a real artefact. 

 

Large Meshes: when dealing with virtual replicas of real 

objects, among the most valuable attributes of interest for the 

Cultural Heritage is the ability to be as close as possible to the 

real measurements. That is, a large amount of geometric data is 

needed to represent the virtual 3D object. From the point of 

view of a WebGL visualization application, this translates in the 

need for handling an amount of vertices that is far beyond the 

system capabilities. 

To highlight the capabilities of the packed-indexed primitive 

stream (see Section 3.2), Figure 3 shows a 3D scan of 

Michelangelo's David statue composed of 1M triangles.   

 

Caching: the general data flow and cache hierarchy used in 

compiled remote applications (remote online repository, disk, 

system RAM and video RAM) cannot be explicitly 

implemented in web application due to limitations imposed by 

the restrictive permissions policy adopted for security reasons 

by web browsers; for example, it is not possible to create and 

write files in the local file system. This means that we can not 
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explicitly implement the disk cache stage. In reality, even if we 

will not have explicit control over disk usage and cache eviction 

policy, by using standard Image and XmlHttpRequest objects 

we will automatically take advantage of the caching 

mechanisms implemented by the browser itself. In fact, every 

standard web browser caches recently transferred data in the 

local file system (and even system RAM), thus transparently 

providing a disk cache stage. 

 

 
Figure 3. A zoomed view of the rendering of Michelangelo’s 

David statue. 

 

The model outreaches the maximum value for vertex indices 

and is thus automatically subdivided into smaller chunks, 

highlighted by different colors (see Figure 4). 

The performances here range very inconstantly from 90 to 140 

FPS, with peaks of 250. This is probably due to the way the 

timer event is scheduled by the browser. 

 

 
Figure 4. The 1M triangles model is automatically subdivided 

into sub-chunks (highlighted by color) to be rendered with 

WebGL. 

4.2 Large Datasets on the Web 

The large availability of geometric and color data, as well as 

network connections able to transfer up to several megabytes of 

data per second, impose a rendering library to be designed to 

maximize the performances in those areas which are typical of 

multiresolution rendering algorithms. The need for a 

multiresolution approach comes into play whenever we want to 

show datasets that are too large to be handled with respect to 

the hardware capabilities: in particular, the resources which 

mainly influence the output of a multiresolution renderer are 

System and Video RAM speed and amount, as well as the raw 

CPU and GPU performances. 

 

Terrain Models 

To show how the algorithms and data structures in SpiderGL 

can be easily used to integrate virtual 3D exploration inside web 

pages, we implemented a simple but effective multiresolution 

terrain viewer (see Figure 5). Our approach consists of an 

offline pre-processing step which creates a multiresolution 

representation from a discrete elevation and color image, and an 

online out-of-core rendering algorithm. 

As in other existing map-based web applications like Google 

Maps (Google Inc., 2010), the multiresolution dataset is 

organized in tiles. More in detail, in the construction phase, the 

elevation map is first embedded on a quad-tree with user-

defined depth. The depth of the tree determines the dimension 

of the tiles in which the input map is first partitioned. In fact, 

such tiles correspond to the 2D projection of the bounding box 

of the leaf nodes. 

We build the multiresolution dataset in a bottom-up fashion by 

first assigning the tile images to their leaf nodes. Then, tiles for 

internal nodes are generated by assembling the four tiles 

assigned to the node children in a single square image of twice 

the dimensions and then down-sampled by a factor of two. This 

means that all the tiles have the same dimension and, in 

particular, tiles assigned to nodes at level i have half the linear 

resolution of the ones at level i+1. To ensure that the border of 

adjacent tiles match exactly to avoid cracks and discontinuities, 

the square regions of the elevation tiles are expanded by one 

pixel on each side. This is also done for the input color map to 

allow correct color interpolation at borders when bilinear 

filtering is used. The output of the preprocessing step are two 

texture images for each node: a RGBA image stores the surface 

color (RGB channels) and the height map (Alpha channel), and 

a RGB image for normal maps. 

Once the nodes to be rendered are identified by the 

multiresolution algorithm, the rendering process draws each tile 

by using a vertex shader which performs displacement mapping 

on a regular triangle grid. 

 

 
Figure 5. Remote multiresolution visualization of a large terrain 

model. 
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Urban Models 

To show the real potential of WebGL, we implemented a 

multiresolution renderer of urban environments using a special 

data structure called BlockMap (Di Benedetto et al., 2009). One 

of the main advantages of this novel representation is that it can 

be directly encoded into plain 32-bit RGBA images, implying 

that we can use the standard tools natively provided by 

JavaScript (namely, the Image, Canvas and WebGLContext 

objects) to fetch data from remote repositories and upload it to 

the graphics hardware. Another advantage is that the simplicity 

of the rendering algorithm and, more importantly, the use of 

simple instructions in the BlockMap shaders, allow us to write 

efficient JavaScript code and exploit the actual power of 

WebGL without any modification. 

 

 
Figure 6. The Ray-Casted BlockMap technique is implemented 

in SpiderGL for real-time exploration of urban models. 

 

 

5. VIRTUAL MUSEUMS 

The possibility to use the processing capabilities of modern 

graphics hardware directly within web pages allows the 

development of new kind of virtual exploration software that 

can be seamlessly integrated in existing remote digital libraries. 

In particular, in conjunction with the growth in the availability 

of large 3D-scanned models and high resolution photographs, 

the new WebGL standard can be used to create interactive, 

high-quality virtual museums that can be accessed through the 

Web. 

In the following we will describe two case-study that show how 

the exploration and rendering modules of a virtual museum can 

be efficiently implemented. 

  

5.1 Relightable Images with Polynomial Texture Maps 

Although WebGL is designed primarily for three-dimensional 

graphics, the possibility to use the power of the graphics 

hardware at pixel processing level makes it an attractive 

candidate even for complex 2D shading operations. In this case, 

source images are handled under the form of texture maps, and 

per--pixel operations are executed by fragment shaders. As an 

effective use of these capabilities, we used the multiresolution 

framework to implement a Polynomial Texture Map (PTM) 

viewer. A Polynomial Texture Map (Malzbender, 2004; 

Dellepiane et al. 2006) is, in brief, a discrete image where each 

pixel encodes a minimal reflection function which depends on 

the light direction. This allows the user to interactively relight 

the image to facilitate visual inspection of fine details. To 

display such kind of image remotely, as in a streaming terrain 

viewer, a quad-tree is built from the original PTM and, at 

rendering time, a fragment shader computes the current colour 

as a function of the light position, passed as a global uniform 

variable. 

In the example we developed, a large PTM image (2930x2224 

pixels, for a total of 56 Mbytes), shown in Figure 7, is 

progressively streamed and refined according to the zoom level. 

The user can change the position of the virtual light source by 

simply moving the mouse cursor. At each movement, the 

illumination contribution is recomputed in real-time and the 

relighted image is shown. 

 

 
Figure 7. A Polynomial Texture Map is visualized in a multi-

resolution fashion. As the user moves the mouse to change the 

virtual light source direction, the illumination contribution is 

recalculated and shown in real-time. 

 

This technique is mainly used for object that exhibits a main 2D 

structure, such as bas-relief. The net effect is that the virtual 

exploration provides a more immersive experience, allowing to 

examine the objects under different lighting conditions. 

 

5.2 MeShade: a 3D Content Authoring Tool 

While there are very large repositories for pictures, video or 

audio files, a web site like Flickr or YouTube for 3D models has 

yet to come. Up to now there are a few repositories of 3D 

models made by human modellers that one can browse and also 

few examples of repository of 3D scanned models (Stanford 

Computer Graphics Laboratory, 2004; Falcidieno, 2004). 

However it is likely that this will change quickly in the near 

future, both for the increasingly ease of producing 3D models 

by automatic reconstruction means (for example by cheaper and 

cheaper laser scanners (NEXTENGINE, 2010) or by digital 

photography (Vergauwen and Van Gool, 2006)) and for the 

ability to use 3D graphics hardware acceleration in the Web 

browser. 

MeShade is a Web application written with SpiderGL that 

allows the user to load a 3D model and images, create a custom 

shader program (like one can do using, for example, AMD 

RenderMonkey (AMD, 2010), although at the present with a 

more limited number of functionalities), and export JSON and 

HTML code snippets to create a web page which will provide 

interactive visualization of the mesh using the custom shader. 

The user interface of MeShade consists of several collapsible 

and movable panels (see Figure 8), representing the most 

important parts of a shader composer application. 
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Apart from the interactive preview viewport which displays the 

loaded 3D model with the current material, the user is provided 

with text areas for editing the source code of the vertex and the 

fragment shaders. 

 

 
Figure 8. The MeShade user interface allows for the online 

editing of the material shader source code. When finished, a 

JSON script is generated to be included in remote repositories. 

 

The user can validate the correctness of the shaders by using the 

Validate button which will show the compiler output (warning 

and error messages) in the log area. The Apply button will apply 

the shader program to the 3D model. 

The way MeShade handles program uniforms and vertex shader 

attributes is based on predefined names with specific semantic 

and user-defined input values. In particular: 

- every vertex attribute of the mesh is made available to the 

vertex shader by declaring it with a predefined prefix, i.e. vertex 

shader attribute a_position will be mapped to mesh vertex 

attribute stream named position; 

- a series of fundamental and commodity values are exposed via 

predefined uniform names, like transformation matrices, model 

bounding box and so on; 

- whenever a non-predefined uniform is found, an edit form is 

added to the HTML DOM which allows for direct editing of the 

scalar or vector values; the user interface for editing depends on 

the type of the uniform variable; 

- an image load form is created for every texture sampler 

uniform; although texture samplers are standard uniforms in the 

GLSL language, they are grouped in a separate panel to reflect 

the way SpiderGL handles textures. 

 

The 3D model and the texture images are loaded by specifying 

their URL and then pressing the corresponding Load button. 

The interface also contains a list of all available predefined 

uniforms and mesh vertex attributes. The latter ones are updated 

every time a model is loaded. 

Once the user has reached a satisfactory result, he/she can ask 

MeShade to generate the code to embed the 3D model rendered 

with the program shader just created within a web page, by 

pressing the Generate Code button. MeShade will generate two 

code fragments, JSON and HTML, which can be copied to new 

or existing files. 

The JSON section contains the geometry and images locations, 

as well as the shaders source code and uniform values, and thus 

serves as a scene description file. On the other side, the HTML 

code contains all the HTML script tags to be pasted into 

existing pages in order to access and visualize the scene. 

We decided to generate code snippets rather than a complete 

HTML page because repository designers are supposed to use 

their own graphical style throughout their web sites: having 

only a very few lines of code to embed inside web pages allows 

for a variety of design choices. Moreover, separating the JSON 

scene description code allows for sharing the same scene among 

several web pages without code replication. 

 

 

6. CONCLUSIONS 

The work presented in this paper shows the potentiality of a 

WebGL-based application and the new possibilities opened by 

the availability of the modern graphics hardware features within 

the Web browsers. The proposed SpiderGL library made easy  

the coding of complex Computer Graphics applications by 

giving the developer the necessary tools for mathematical 

entities, 3D models management, data retrieval, and, efficient 

and fully-configurable rendering mechanisms. Exploiting these 

new Web technologies in the field of Cultural Heritage will 

allow, in the near future, to create remote virtual museums able 

to provide immersive and detailed exploration applications not 

confined to small objects but including very detailed artefact 

and even large environments like reconstructions of ancient 

cities. 

 

Future Work 

Beside the work of upgrading and extending SpiderGL, which 

is obviously a daily activity, we envisage a promising direction 

of work in the automatization of the process of converting large 

databases of scanned objects to Web repositories. The problems 

are mainly related to the typical large size of scanned objects 

and to the way to optimize them for a remote visualization. 

Although there are many available tools to reduce the number 

of polygons in a mesh, to parameterize it and to recover almost 

the full detail by bump mapping techniques (just to mention a 

viable, not unique, optimization pipeline), the whole process 

still requires a skilled user to be done. 
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