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ABSTRACT: 

Earth observation driven ecosystem modeling have played a major role in estimation of carbon budget components such as  gross 
primary productivity (GPP) and net primary production (NPP) over terrestrial ecosystems, including agriculture. The present study 
therefore evaluate satellite-driven vegetation photosynthesis (VPM) model for GPP estimation over agro-ecosystems in India by using 
time series of the Normalized Difference Vegetation Index (NDVI) from SPOT-VEGETATION, cloud cover observation from MODIS, 
coarse-grid C3/C4 crop fraction and  decadal grided databases of maximum and minimum temperatures. Parameterization of VPM 
parameters e.g. maximum light use efficiency (�*) and Tscalar was done based on eddy-covariance measurements and literature survey. 
Incorporation of C3/C4 crop fraction is a modification to commonly used constant maximum LUE. Modeling results from VPM captured 
very well the geographical pattern of GPP and NPP over cropland in India. Well managed agro-ecosystems in Trans-Gangetic and upper 
Indo-Gangetic plains had the highest magnitude of GPP with  peak GPP during kharif occurs in sugarcane–wheat system (western UP) 
and it occurs in rice-wheat system (Punjab) during Rabi season. Overall, croplands in these plains had more annual GPP (> 1000 g C m-2) 
and NPP (> 600 g C m-2) due to input-intensive cultivation. Desertic tracts of western Rajasthan showed the least GPP and NPP values. 
Country-level contribution of croplands to national GPP and NPP amounts to1.34 Pg C year-1 and 0.859  Pg C year-1, respectively. 
Modeled estimates of cropland NPP agrees well with ground-based estimates for north-western India (R2 = 0.63 and RMSE = 108 g C m-

2). Future research will focus on evaluating the VPM model with medium resolution sensors such as AWiFS and MODIS for rice-wheat 
system and validating with eddy-covariance measurements.  

1. INTRODUCTION 

Global land ecosystems in recent time appeared as major sink of 
global carbon cycle and curtailing the increasing CO2
concentration in the atmosphere (Zhao and Running, 2009). 
Henceforth, the quantification of regional contribution from 
terrestrial ecosystems to global carbon budget is a necessity. 
Terrestrial primary productivity is key component of carbon cycle 
and is quantified as amount of carbon fixed by plants via 
photosynthesis and accumulated as biomass. As of now most 
studies related to primary productivity and carbon budget in India 
and abroad have focused on forest ecosystem due to their 
potential to sequester high magnitude of atmospheric CO2.  Agro-
ecosystems have received less attention by carbon science groups 
worldwide and in India, in-spite of they covers around 15 million 
km2 all over the world and about more than half of land area in 
India.  Besides there are evidences that intensively managed agro-
ecosystems act as a CO2 sink in the terrestrial biosphere (e.g., 
Law et al., 2002; Barford et al., 2003; Hollinger et al., 2004). 
Recent model simulation by Bondeau et al.(2007) suggested that 
a net sink of 0.61–0.75 Gt C year-1 in the 1990s occurred in global 
agriculture-related areas. In past, few studies based on  crop yield 
and area statistics yielded a  varying estimates of total   cropland 
NPP in India ( i.e.,  0.407  Pg C in 1989 (Dadhwal et al., 1996; 
Dadhwal and Chabra, 2002),  0.63 Pg C in 1980 (Hingane, 1991). 
NPP databases from crop statistics are area-based and thus 
lacking spatial detail required for agro-ecosystem management 
and ecosystem related services. 

Satellite remote sensing has provided unique capability to monitor 
global and regional dynamics of vegetation properties and has 
been widely used in net primary productivity assessment (Prince 
and Goward, 1995; Potter et al., 2003; Running et al., 2004). The 
remote sensing of NPP mainly follows light use efficiency (LUE) 
concept (Monteith, 1977) that describes carbon assimilation in 
plants is proportional to product of light absorption and  light use 
efficiency  as nearly constant or approximated for diverse 
ecosystems : 

NPP = � PAR × FPAR × ε                                          (1) 

Where NPP is net primary productivity for season or year (g C m-

2), PAR is phtosynthetically active radiation in Mega Joule (MJ), 
fPAR is fractional of absorbed PAR (unitless) which is quantified 
from remotely sensed vegetation indices, and   ε  is light use 
efficiency (g C MJ-1) factor. Recently few LUE models (e.g. 
MODIS algorithm, vegetation photosynthesis model) uses 
equation (1) to estimate gross primary productivity (GPP) and 
subsequently NPP with inclusion of mechanistic parameteization 
of autotrophic respiration (Running et al. 2004; Xiao et al., 2004). 
Recently advent of satellite optical sensors such as SPOT-
Vegetation and MODIS covers wide range of wavelength and 
make it easier to drive GPP or NPP models entirely from satellite 
observations.  In past, NPP assessment over India using  LUE 
models  such as  GLO-PEM (Prince & Goward 1995) and 
Carnegie-Ames-Stanford-Approach (CASA) (Potter et al. 1993; 
Field et al.1995) adopted  the down-regulators (water/temperature 
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stress) of maximum light use efficiency (�*) obtained from 
meteorological variables which is mostly coarse over space and 
time (Nayak et al., 2009; Singh et al., 2011). Furthermore, 
climatological information may not correctly captures stress 
occurred in managed agroecosystems with variable input of 
advanced cultivars, fertilizer and irrigation.  Recently newer LUE 
models (e.g. VPM, EC-LUE) have been implemented with the use 
of stress indices derived from SWIR band as measure of water 
stress scalar in biospheric NPP models and found that the 
inclusion of a water stress parameter directly from satellite 
improves accuracy of NPP modeling  (Xiao et al. 2005).  

Moreover, validation of simulated NPP from satellite driven 
ecosystem models over agricultural areas is a challenging task 
where coordinated net-work of eddy-covariance towers are 
lacking. Validation of model NPP estimates with some 
independent measure of carbon uptake based on crop statistics 
holds key importance in carbon cycle research (Lobell et al.  
2002). In view of improving method for estimating GPP or NPP 
over vast croplands in India, we chose to apply a relatively new 
vegetation photosyntheisis model with aim of driving model with 
more satellite remote sensing inputs and subsequently validation 
with crop NPP assessment from agricultural census data. 

2. MATERIALS AND METHODS 

2.1 Overview of VPM model  

The VPM model is based on contribution of photosynthetically 
active vegetation (PAV) and non-photosynthetic vegetation 
(NPV) to fraction of PAR absorbed by canopy (fPAR.). Thus 
VPM algorithm is based on LUE, PAR, and the fraction of PAR 
absorbed by photosynthetic active vegetation or chlorophyll 
(fPARchl): 

GPP = � × FPARchl × PAR                                      (2) 
FPARchl  =  α  ×  EVI                                               (3) 
�  = �*  × Tscalar × Wscalar × Pscalar                              (4) 

where �*  is maximal light use efficiency. Tscalar, Wscalar and 
Pscalar are the down-regulation scalars for the effects of 
temperature, water and leaf phenology on the LUE of vegetation 
type, respectively. EVI is the enhanced vegetation index derived 
from reflectance in blue, Red and NIR wavelength regions.  

In general EVI is used in VPM model because GPP is more 
sensitive to EVI in high biomass areas. In our study we explored 
use of  normalized difference vegetation index (NDVI) based 
equation for  fPAR estimation within VPM because  NDVI had a 
wider range and is more sensitive to low biomass areas of most 
croplands in arid and semi-arid arid environment. We used  
fPAR-NDVI relationship developed by Myneni and Williams 
(1994) based on radiation transfer models that was also found to 
remain remains robust in the presence of pixel  heterogeneity, 
vegetation clumping, and variations in leaf orientation and optical 
properties.  

fPAR = a × NDVI + b                                 (5) 

where a and b are empirical constants. In our study, a and b are 
set to 1.24 and 0.168 according to Sims et al. (2005) 

Tscalar is estimated at each time step, using the equation developed 
for the Terrestrial Ecosystem Model (Raich et al.,1991): 

                                  (T – Tmin) (T- Tmax) 
      Tscalar     =     ------------------------------------------          (6)      
                           [(T – Tmin) (T – Tmax)] – (T – Topt)2]     

where, T is daytime mean temperature, obtained as average of  
maximum and mean temperatures on daily basis. Tmin, Tmax, 
and Topt  are the minimum, maximum and optimum temperature 
for photosynthetic activities, respectively.  

In VPM, water stress effects on photosynthesis in terms of Wscalar  
was quantified using land surface wetness index (LSWI)  that is 
sensitive to canopy water stress. The LSWI is a linear combina-
tion of NIR and SWIR bands and calculated as: 

                             2NIR - 2SWIR
       LSWI =        -----------------                                            (7)                            
                            2NIR +  2SWIR 

where �NIR and �SWIR are reflectances in NIR (780-890 nm)  and 
SWIR (1580–1750 nm) regions, respectively, for each 10-day 
composite of SPOT-VEGETATION data in present study. We 
used LSWI to estimate seasonal dynamics of the water stress 
scalar (Wscalar) based on the simple approach of Xiao et al. (2005): 

                               1 + LSWI 
          Wscalar  =     ------------                                               (8) 
                                1- LSWImax
                                                             
where LSWImax is the maximum LSWI within the wheat growing 
season for individual pixels. 

Pscalar was set to 1 because of leaf emergence in dominantly 
growing crops such as rice and wheat is throughout growing 
season (Xiao et al., 2005) 

Net Primary Productivity (NPP) is the balance between GPP and 
autotrophic respiration (Ra) and hence described as: 

NPP = GPP- Ra                                                          (9) 

The autotrophic respiration is affected by air temperature (T, °C) 
and gross primary production as describe by the following  
empirical relationship (Furumi et al, 2002): 

Ra = GPP*[(1.825 + 1.145T)/100]                                      (10) 

2.2 Parameterization of VPM model 

 In general, VPM model needs three parameters. Firstly, 
maximum light use efficiency, �* has to be set which is vegetation 
dependent. The �* can be parameterized as ecosystem quantum 
yield based on the Michaelis-Menten light response function. In 
the present study, maximum ecosystem yield parameterized based 
on eddy-covariance measurements over wheat was taken as 
representative of C3 crops (1.37 g C MJ-1 APAR) in sub-tropical 
India (Patel et al., 2011). For C4 crops, value of the �* (1.64 g C 
MJ-1 APAR)) was adopted from EC based studies on maize in arid 
and semi-arid china (Wang et al., 2010). Effect of spatial 
heterogeneity of C3 and C4 crops on maximum LUE for each 
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pixel was also taken into account by weighting of single 
maximum LUE  of C3/C4 crops by proportion of C3 and C4 crops 
as well as native grasslands (Ramakutty and Foley, 2000) in each 
5 minute grid uniformly. Finally maximum �* each 1km pixel of 
cropland was obtained as : 

�* = LUEc3 × propc3 + LUEC4× propC4 + LUEgrass ×  propgrass    (11)                                       

Where, LUEc3, LUEc4 and LUEgrass are maximum light use 
efficiency of C3, C4 and grass. The propc3, propC4 and propgrass are 
the fraction of C3 crops, C4 crops and grassland for each 1km 
pixel of cropland areas derived from multi-temporal SPOT-
Vegetation data (Agrawal et al., 2003).  

Secondly, Tscalar needs setting of maximum, minimum and 
optimum temperature for photosynthetic activity of each typical 
vegetation type.  The values of Tmin, Tmax and Topt for c4 crops 
were taken as 8, 30 and 42 °C, respectively (Black, 1973; Wang et 
al., 2010). For C3 crops, we used 5.0, 40.0 and 25.0 °C for Tmin, 
Tmax, and Topt, respectively (Huang et al., 2008) 

2.3 Data sets and processing  

2.3.1 Satellite data processing: Vegetation indices such as 
NDVI, EVI and LSWI forms a basics time series input to drive 
VPM model for GPP estimation. So we acquired VGT-S10 (10-
day synthesis product) of NDVI and radiometric reflectance 
values of blue (430–470 nm), red (610–680 nm), near-infrared 
(NIR, 780–890 nm), and shortwave infrared (SWIR, 1580–1750 
nm) bands. The standard VGT-S10 data were obtained by 
selecting the VGT-S1 pixels that have the maximum Normalized 
Difference Vegetation Index (NDVI) values within a 10-day 
period. The Maximum value composite reduced atmospheric 
effect and cloud contamination. The VGT-S10 products are freely 
available to the public (http://free.vgt.vito.be). Data on NDVI and 
radiometric reflectance were acquired during a period from May 
2003 – April 2004 on a global scale.  A subset of all images 
corresponds to India were generated by using India boundary 
mask. For removing cloud cover effects and smoothening of time-
series of NDVI, 10-day NDVI datasets were filtered using 
wavelet filtering algorithm. Other indices e.g. EVI and LSWI 
were calculated using original reflectance values at top of 
atmosphere considering the fact that these indices are less affected 
by atmospheric aerosols and increasing cloud cover. 

2.3.2 Estimation of global radiation: The photosynthetically 
active radiation in present study is taken as 45% of solar radiation 
estimated from MDIS cloud clover observations 
(www.neo.nasa.gov). We have used Angstrom–Prescott formula 
(Angstrom, 1924; Prescott, 1940) with relative sunshine from 
cloud cover observations as following : 

G = RA (A + B* S)                                         (12) 

Where,  G and RA  represent daily total of global solar radiation 
(MJ m−2 d−1) and extraterrestrial radiation (MJ m−2 d−1), A and B 
are site specific coefficients and derived for each grid by using  
spatially referenced geographical coordinates and altitude 
(GTOPO30) as per method suggested by Bandopadhyay et al., 
2008). Sum of A and B together represents atmospheric 
transparency index (ATI). S is relative sunshine index (S = n/N) 
and is estimated from monthly cloud cover observations.  

2.3.3 Meteorological and ancillary data: Daily meteorological 
data particularly air temperatures (Maximum and minimum 
temperatures) at 1-degree grid were obtained from National 
climate data centre, IMD. This interpolated gids of temperature 
derived from network of weather stations in India (Rajeevan et 
al., ). Location of major cropping pattern was decided based on 
pre-dominant district of individual cropping (Atlas of Cropping 
System, PDCSR, ICAR, India). The profile of GPP and NPP for 
major cropping system extracted by taking 3×3 pixel in the centre 
of district having pre-dominance of cropping system. 

Carbon uptake from cropland was also independently estimated 
from annual crop production data at district level. These cropland 
statistics were downloaded from website of Ministry of 
Agriculture (www.). The crop statistical data are compiled for 
various districts.  Analysis of data was restricted to 20 major 
crops grown with criteria of crop being included if area more than 
10 thousand hectares in each state.  Many steps were followed to 
convert harvestable product into NPP at district level. These 
includes conversion of unit of harvestable product into common 
unit of grams and then converted to NPP by using values of 
moisture content (MC) and harvest index (HI, ratio of harvestable 
produce to total plan dry weight) and root:shoot ratio (Rrs) of 
crops obtained from published literature over India. The present 
study also assumes that 45% of crop biomass is C and above 
ground biomass accounts 80% of total crop biomass (Lobell  et 
al., 2002). The crop land NPP is thus expressed as gram C per 
unit area and is calculated as (Lobell et al., 2002). Lower and 
upper estimates of  ground-based cropland NPP over India for 
2003-04 estimated by taking  HI ± SD  and Rrs ± SD. 

3. RESULTS AND DISCUSSION 

3.1 Spatial pattern of primary productivity 

Information on primary productivity on a high-resolution grid 
assumes significant importance in identifying appropriate 
agricultural practices of carbon sequestration. In this context, 
VPM model run over croplands in India on 1km grid using 
decadal forcing, and pattern of both gross and net productivity 
(GPP & NPP) on annual-scale is presented in figure 1.  

Spatially, the patterns of GPP and NPP have similar fashion, and 
hence reveal a close dependence of NPP on GPP as compared to 
climate that controls autotrophic respiration. On annual basis, 
both the GPP and NPP have showed large spatial variability. 
Gross and net primary productivity over croplands in India ranged 
from 200 – 1500 and 50 – 1000 g C m-2, respectively. Annual 
modeled NPP of cropland was ranged from very little (50 g C m-

2) to considerably as high as 1000 g C m-2 over India. In general, 
cropland areas in Trans-Gangetic and upper Indo-Gangetic plains 
have predominantly high magnitude of both GPP (>1000 gC m-2) 
and NPP (> 600 g C m-2) followed by agricultural areas in Eastern 
Ghats of India. High levels of carbon uptake by agro-ecosystems 
in these plains and Eastern Ghat was mainly attributed to alluvial 
fertile soils and intensive agriculture practiced with adequate 
irrigation and fertilizer inputs. However, cropland in desertic 
tracts and some parts of dry-lands in peninsula had lower values 
of annual GPP and NPP. Less productivity in these regions 
occurred because cultivation in these areas have large dependence 
on rains which in turn results into reduction in both cropping 
intensity and per unit area productivity. Regionally, croplands in 
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India have significant contribution to carbon storage by terrestrial 
biosphere in India. Total GPP and NPP modeled by VPM over 
vast croplands in India amounts to 1.34 Pg C and 0.859 Pg C, 
respectively. The estimates of cropland NPP from VPM was 
found to be higher than ground-based cropland NPP (0.61 – 0.70 
Pg C) due to contribution of grasses, fallow land and weeds to 
NPP at 1km pixel. If extreme outliers by 5 percentile on both side 
of NPP excluded, the modeled total cropland NPP become close  
to 0.7 Pg C and cropland area matches with net-sown area ( 1.46 
m ha) The mean GPP and NPP was in the tune of 807 and 515 g 
C m-2, respectively. The contribution of croplands is more than 
half of total NPP of terrestrial biosphere reported in India and 
agrees well with the cropland NPP estimates from CASA for the 
same year (Nayak et al.,  2010). 

Fig.1. Spatial pattern of annual primary productivity over 
cropland in India during 2003-04 from VPM

3.2 Temporal pattern of GPP over major crop rotations 

Time-evolution of carbon uptake in agro-ecosystem differs from 
natural ecosystems and is a key to understand influence of 
phenology, environmental and cropping practice such as crop 
rotation and C4/C3 crop mixture. Henceforth, the time-series of 
modeled GPP on decadal time scale extracted for various crop 
rotation practiced dominantly in selected districts and presented in 
figure 2a & b. Well managed agro-ecosystems in Trans-Gangetic 
and upper Indo-Gangetic plains had two distinct peaks with 

highest magnitude of GPP. Peak GPP during kharif occurs in 
sugarcane–wheat system (western UP) and same occured in rice-
wheat system (Punjab) during Rabi season. Sugarcane-wheat 
system in western UP  had the highest annual GPP (1295 g C m-2) 
because of longer persistence of high magnitude of GPP (60 g C 
m-2 10day-1) in sugarcane due to C4 photosynthesis mechanism 
and longer duration of active growing season.  
The cropping systems, however, in semi-arid areas have 
comparatively less magnitude of GPP throughout the growing 
season.  The crop rotations such as groundnut-wheat in Junagadh, 
Gujarat and maize-wheat in Udaipur, Rajasthan had two peaks but 
little less GPP on annual scale.  In eastern state, triple crop system 
such has rice-vegetable-rice in west-bengal had three distinct 
peaks of GPP but the magnitude of GPP during each crop 
growing season was considerably less 
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Fig. 2 Temporal variation in GPP over major cropping during 
2003-04 growing season in  India 

3.3 Temporal pattern of mean cropland NPP 

 Net primary productivity by area-weighted average over all 
cropland pixels for each 10-day period had distinct time-variation 
over a growing season (Fig. 3). Time plot of NPP over a 
agricultural year illustrates that cropland ecosystem as a whole in 
country have two distinct active growing season as reflected from 
two peaks of NPP.  The peaks were of same magnitude during 
both kharif and rabi seasons. In initial dekads of dry summer in 
May, the NPP was almost static and negligible. As the south-west 
monsoon commences, NPP increases rapidly following active 
growth of crops in kharif season and attained a peak (25 g C m-2

10day-1) in the first dekad of October, 2003. NPP then declined 
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steadily due to maturity and crop senescence till 22nd dekad in a 
year. The NPP was found to remains constant around 15 g C m-2

10day-1 during periods of December. The NPP in rabi season 
showed remarkable increase from January and reached to peak  in  
mid of February and decline drastically from March onwards due 
to harvest of crops. 
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Fig. 3.Seasonal  variation in modeled estimates of mean NPP over 
cropland in India.  Bar shows ± standard deviation 

3.4 Validation of cropland NPP 

An evaluation of our results is difficult because of the lack of 
ground data representative biomass measurements at 1km 
resolution as well as footprint scale eddy covariance 
measurements. Despite these limitations, modeled performance 
was evaluated using agricultural census data. Crop NPP modeled 
using VPM was compared against ground based NPP at district 
falling in arid, semiarid and sub humid climatic setting. A 1:1 plot 
(Fig. 4) showed that cropland NPP from VPM was in close 
agreement with ground-based crop NPP at district level for 
northwest India (R2 = 0.63). The root mean square error 
associated with modeled NPP was 110 g C m-2.  
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Fig. 4. Comparison of modelled cropland NPP against ground-
based NPP  

The present study also revealed that VPM model with more inputs 
from satellite could yield similar or improved estimates of 
cropland NPP over that of previously published estimates of 
CASA (R2 = 0.55, RMSE = 118 gC m-2). The reason may be the 
accurate capture of water related constrains on NPP by satellite 

based land surface wetness index in areas of irrigated agriculture. 
The results on NPP estimates commensurate with previous reports 
(Lobell et al., 2002) which reveals that regions with irrigation 
practices may not be modeled accurately since environmental 
stresses predicted by meteorological conditions is not ideally 
applied to irrigated agriculture. When comparison made over 
predominantly sub-humid region comprising districts of 
Uttarpradesh and Haryana,  the modeled cropland NPP had  
relatively weak agreement with ground based cropland NPP (R2 = 
0.35, RMSE = 128 g C m-2). 

4. CONCLUSIONS 

The present study explores potential of VPM model for estimating 
GPP and its seasonal dynamics over agro-ecosystems in sub-
tropical environment.  The VPM model seems applicable to 
Indian subcontinent having large area of croplands and 
predominantly arid-semi arid climatic regimes. The VPM model 
with more rely on satellite inputs such as vegetation indices 
(NDVI, LSWI), cloud cover based radiation, temperature and 
maximum light use efficiency (�*) parameter for individual crop 
species or crop group is capable for estimating regional GPP.  
Estimation of GPP from with simple formulation of autotrophic 
respiration could yield satisfactory estimates of net primary 
productivity over croplands. Although modeled NPP agrees well 
with large area estimate of crop NPP based on crop yields,  
Validity of VPM based GPP/NPP for particular crop rotation 
needs to be investigated using flux-tower measurements. Future 
research shall attempt to validate the capability of the VPM model 
in capturing the inter-annual GPP variations and interaction with 
environmental variables. 
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