POTENTIAL OF UAV BASED CONVERGENT PHOTOGRAMMETRY IN MONITORING REGENERATION STANDARDS
Keywords: UAV, point clouds, regeneration, forest management, stocking, space occupancy, height, free-to-grow
Abstract. Several thousand hectares of forest blocks are regenerating after harvest in Canada. Monitoring their performance over different stages of growth is critical in ensuring future productivity and ecological balance. Tools for rapid evaluation can support timely and reliable planning of interventions. Conventional ground surveys or visual image assessments are either time intensive or inaccurate, while alternate operational remote sensing tools are unavailable. In this study, we test the feasibility and strength of UAV-based photogrammetry with an EO camera on a UAV platform in assessing regeneration performance. Specifically we evaluated stocking, spatial density and height distribution of naturally growing (irregularly spaced stems) or planted (regularly spaced stems) conifer regeneration in different phases of growth. Standard photogrammetric workflow was applied on the 785 acquired images for 3D reconstruction of the study sites. The required parameters were derived based on automated single stem detection algorithm developed in-house. Comparing with field survey data, preliminary results hold promise. Future studies are planned to expand the scope to larger areas and different stand conditions.