HOMOGENEOUS GEOVISUALIZATION OF COASTAL AREAS FROM HETEROGENEOUS SPATIO-TEMPORAL DATA
Keywords: Geovisualization, Style, Realism, DTM, Lidar, Coastline, Tides
Abstract. On coastal areas, recent increase in production of open-access high-quality data over large areas reflects high interests in modeling and geovisualization, especially for applications of sea level rise prediction, ship traffic security and ecological protection. Research interests are due to tricky challenges from the intrinsic nature of the coastal area, which is composed of complex geographical objects of which spatial extents vary in time, especially in the intertidal zone (tides, sands, etc.). Another interest is the complex modeling of this area based on imprecise cartographic objects (coastline, highest/lowest water level, etc.). The challenge of visualizing such specific area comes thus from 3D+t information, i.e. spatio-temporal data, and their visual integration.
In this paper, we present a methodology for geovisualization issues over coastal areas. The first challenge consists in integrating multi-source heterogeneous data, i.e. raster and vector, terrestrial and hydrographic data often coming from various ‘paradigms’, while providing a homogeneous geovisualization of the coastal area and in particular the phenomenon of the water depth. The second challenge consists in finding various possibilities to geovisualize this dynamic geographical phenomenon in controlling the level of photorealism in hybrid visualizations. Our approach is based on the use of a high-resolution Digital Terrain Model (DTM) coming from high resolution LiDAR data point cloud, tidal and topographic data. We present and discuss homogeneous hybrid visualizations, based on LiDAR and map, and on, LiDAR and orthoimagery, in order to enhance the realism while considering the water depth.