The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Download
Citation
Articles | Volume XL-7/W1
https://doi.org/10.5194/isprsarchives-XL-7-W1-193-2013
https://doi.org/10.5194/isprsarchives-XL-7-W1-193-2013
08 Aug 2013
 | 08 Aug 2013

SUPERRESOLUTION SAR IMAGING ALGORITHM BASED ON MVM AND WEIGHTED NORM EXTRAPOLATION

P. Zhang, Q. Chen, Z. Li, Z. Tang, J. Liu, and L. Zhao

Keywords: Synthetic Aperture Radar (SAR), Superresolution, Minimum Variance Method, Minimum Weighted Norm, Extrapolation

Abstract. In this paper, we present an extrapolation approach, which uses minimum weighted norm constraint and minimum variance spectrum estimation, for improving synthetic aperture radar (SAR) resolution. Minimum variance method is a robust high resolution method to estimate spectrum. Based on the theory of SAR imaging, the signal model of SAR imagery is analyzed to be feasible for using data extrapolation methods to improve the resolution of SAR image. The method is used to extrapolate the efficient bandwidth in phase history field and better results are obtained compared with adaptive weighted norm extrapolation (AWNE) method and traditional imaging method using simulated data and actual measured data.