SUPERRESOLUTION SAR IMAGING ALGORITHM BASED ON MVM AND WEIGHTED NORM EXTRAPOLATION
Keywords: Synthetic Aperture Radar (SAR), Superresolution, Minimum Variance Method, Minimum Weighted Norm, Extrapolation
Abstract. In this paper, we present an extrapolation approach, which uses minimum weighted norm constraint and minimum variance spectrum estimation, for improving synthetic aperture radar (SAR) resolution. Minimum variance method is a robust high resolution method to estimate spectrum. Based on the theory of SAR imaging, the signal model of SAR imagery is analyzed to be feasible for using data extrapolation methods to improve the resolution of SAR image. The method is used to extrapolate the efficient bandwidth in phase history field and better results are obtained compared with adaptive weighted norm extrapolation (AWNE) method and traditional imaging method using simulated data and actual measured data.