SPATIAL-TEMPORAL DETECTION OF CHANGES ON THE SOUTHERN COAST OF THE BALTIC SEA BASED ON MULTITEMPORAL AERIAL PHOTOGRAPHS
Keywords: Multitemporal data, airborne orthophotomap, change detection, coastal area, Baltic sea
Abstract. Digital photogrammetry and remote sensing solutions applied under the project and combined with the geographical information system made it possible to utilize data originating from various sources and dating back to different periods. Research works made use of archival and up-to-date aerial images, satellite images, orthophotomaps. Multitemporal data served for mapping and monitoring intermediate conditions of the Baltic Sea shore zone without a need for a direct interference in the environment. The main objective of research was to determine the dynamics and volume of sea shore changes along the selected part of coast in the period of 1951-2004, and to assess the tendencies of shore development in that area. For each of the six annual data sets, the following were determined: front dune base line, water line and the beach width. The location of the dune base line, which reflects the course of the shoreline in a given year was reconstructed based on stereoscopic study of images from each annual set. Unidirectional changes in the period of 1951-2004 occurred only within 10% of the examined shore section length. The examined shore is marked by a high and considerable dynamics of changes. Almost half of the shore, in particular the middle coast shows big changes, in excess of 2 m/year. The limits of shoreline changes ranged from 120 to -90 m, and their velocity from 0 to 11 m/year, save that the middle and west parts of the examined coast section were subjected to definitely more intense shore transformations. Research based on the analysis of multitemporal aerial images made it possible to reconstruct the intermediate conditions of the Baltic Sea shoreline and determine the volume and rate of changes in the location of dune base line in the examined period of 53 years, and to find out tendencies of shore development and dynamics.