WATER RESOURCES STATUS AND AVAILABILITY ASSESSMENT IN CURRENT AND FUTURE CLIMATE CHANGE SCENARIOS FOR BEAS RIVER BASIN OF NORTH WESTERN HIMALAYA
Keywords: Water balance, Beas river basin, snow melt runoff, glacier melt, Himalaya
Abstract. The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC) model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP) forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution) from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB) from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m3/s from VIC and 50 to 1556 m3/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R2 of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily precipitation and daily surface wind speed. The GFDL model also gives validation phase scenarios from 2006 to 2015, which are used to test the overall model performance with current data. The current assessment made by hydrological water balance based approach has given reasonable good results in Beas river basin. The main limitation of this study is lack of full representation of glacier melt flow using fully energy balance model. This component will be addressed in coming time and it will be integrated with tradition hydrological and snowmelt runoff models. The other limitation of current study is dependence on NCEP or other reanalysis of climate forcing data for hydrological modelling, this leads to mismatch between actual and simulated water balance components. This problem can be addressed if more ground based and fine resolution grid based hydro meteorological data are used as input forcing data for hydrological modelling.