The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLI-B8
https://doi.org/10.5194/isprs-archives-XLI-B8-571-2016
https://doi.org/10.5194/isprs-archives-XLI-B8-571-2016
23 Jun 2016
 | 23 Jun 2016

VEGETATION DISTURBANCE AND RECOVERY FOLLOWING A RARE WINDTHROW EVENT IN THE GREAT SMOKY MOUNTAINS NATIONAL PARK

S. Bernardes and M. Madden

Keywords: tornado, Landsat, Enhanced Vegetation Index, EVI, time-series, Southeastern United States

Abstract. The tornado outbreak of April 2011 in the Southeastern United States caused major damage to property and natural ecosystems. During the outbreak, the Great Smoky Mountains National Park (GRSM) was hit by an EF4 tornado, resulting in a long strip of broken branches and toppled old-growth forest trees. Little is known of the consequences of extreme windthrow events, partly due to limitations in characterizing and monitoring wind-driven vegetation disturbance and recovery over large areas and over time. This work analyzed vegetation damage in the GRSM resulting from the 2011 tornado outbreak and monitored vegetation recovery in the region over a four-year period. Anomalies of the Enhanced Vegetation Index (EVI) calculated using Landsat scenes showed that the 2011 tornado affected 21.38 km2 of forest, including submesic to mesic oak/hardwoods, Southern Appalachian cove hardwood forests and montane alluvial forests. Tornado damage severity was mapped and investigated by using anomalies of EVI over space and time and showed track discontinuity and significant variation in damage intensity along the tornado track, suggesting vortex-topography interactions. Temporal profiles and spatial representations of EVI anomalies for the period 2011-2015 indicated that EVI in 2015 was above pre-event values, indicating homogeneous canopy and lack of vertical structure during regrowth.