USE OF A MULTISPECTRAL UAV PHOTOGRAMMETRY FOR DETECTION AND TRACKING OF FOREST DISTURBANCE DYNAMICS
Keywords: UAV, Photogrammetry, Multispectral Sensor, Forest Disturbance, Vegetation Indices, Change Detection
Abstract. This study presents a new methodological approach for assessment of spatial and qualitative aspects of forest disturbance based on the use of multispectral imaging camera with the UAV photogrammetry. We have used the miniaturized multispectral sensor Tetracam Micro Multiple Camera Array (μ-MCA) Snap 6 with the multirotor imaging platform to get multispectral imagery with high spatial resolution. The study area is located in the Sumava Mountains, Central Europe, heavily affected by windstorms, followed by extensive and repeated bark beetle (Ips typographus [L.]) outbreaks in the past 20 years. After two decades, there is apparent continuous spread of forest disturbance as well as rapid regeneration of forest vegetation, related with changes in species and their diversity. For testing of suggested methodology, we have launched imaging campaign in experimental site under various stages of forest disturbance and regeneration. The imagery of high spatial and spectral resolution enabled to analyse the inner structure and dynamics of the processes. The most informative bands for tree stress detection caused by bark beetle infestation are band 2 (650nm) and band 3 (700nm), followed by band 4 (800 nm) from the, red-edge and NIR part of the spectrum. We have identified only three indices, which seems to be able to correctly detect different forest disturbance categories in the complex conditions of mixture of categories. These are Normalized Difference Vegetation Index (NDVI), Simple 800/650 Ratio Pigment specific simple ratio B1 and Red-edge Index.