The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Download
Citation
Articles | Volume XLI-B8
https://doi.org/10.5194/isprs-archives-XLI-B8-941-2016
https://doi.org/10.5194/isprs-archives-XLI-B8-941-2016
23 Jun 2016
 | 23 Jun 2016

LANDSAT 8 MULTISPECTRAL AND PANSHARPENED IMAGERY PROCESSING ON THE STUDY OF CIVIL ENGINEERING ISSUES

M. A. Lazaridou and A. Ch. Karagianni

Keywords: Landsat 8, pansharpened, image interpretation, supervised classification, land cover

Abstract. Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM – Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion – pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.