
 | 
31 May 2017
             
         
    DATA PROCESSING FOR THE SPACE-BASED DESIS HYPERSPECTRAL SENSOR 
        
            E. Carmona, J. Avbelj, K. Alonso, M. Bachmann, D. Cerra, A. Eckardt, B. Gerasch, L. Graham, B. Günther, U. Heiden, G. Kerr, U. Knodt, D. Krutz, H. Krawcyk, A. Makarau, R. Miller, R. Müller, R. Perkins, and I. Walter
        
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
        Related authors
        
            
            
    
            
                    
                        
                            
                            
                            
                                     
                                Building Segmentation and Modelling from Space-Borne and Aerial Imagery
                                Thomas Krauß, Ksenia Bittner, Pablo d’Angelo, Philipp Schuegraf, Peter Reinartz, and Rupert Müller
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-6-2025, 177–182, https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-177-2025,https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-177-2025, 2025
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                THE DESIS L2A PROCESSOR AND VALIDATION OF L2A PRODUCTS USING AERONET AND RADCALNET DATA
                                R. de los Reyes, K. Alonso, M. Bachmann, E. Carmona, M. Langheinrich, R. Müller, B. Pflug, and R. Richter
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 9–12, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-9-2022,https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-9-2022, 2022
                             
                            
                            
                         
                     
                    
                        
                            
                            
                                     
                                Towards spaceborne monitoring of localized CO2 emissions: an instrument concept and first performance assessment
                                Johan Strandgren, David Krutz, Jonas Wilzewski, Carsten Paproth, Ilse Sebastian, Kevin R. Gurney, Jianming Liang, Anke Roiger, and André Butz
                                    Atmos. Meas. Tech., 13, 2887–2904, https://doi.org/10.5194/amt-13-2887-2020,https://doi.org/10.5194/amt-13-2887-2020, 2020
                                    Short summary
                                    
                             
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                PREFACE – ISPRS WORKSHOP HYPERSPECTRAL SENSING MEETS MACHINE LEARNING AND PATTERN ANALYSIS (HYPERMLPA 2019)
                                M. Weinmann, R. Müller, R. Reulke, E. Honkavaara, D. Tuia, and S. Keller
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1825–1826, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1825-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1825-2019, 2019
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                PREFACE – HYPERSPECTRAL SENSING MEETS MACHINE LEARNING AND PATTERN ANALYSIS (HYPERMLPA 2019)
                                M. Weinmann, R. Müller, R. Reulke, E. Honkavaara, D. Tuia, and S. Keller
                                    ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 607–608, https://doi.org/10.5194/isprs-annals-IV-2-W5-607-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-607-2019, 2019
                             
                            
                            
                         
                     
                    
                    
                    
                        
                            
                            
                            
                                     
                                THE NEW HYPERSPECTRAL SENSOR DESIS ON THE MULTI-PAYLOAD PLATFORM MUSES INSTALLED ON THE ISS
                                R. Müller, J. Avbelj, E. Carmona, A. Eckardt, B. Gerasch, L. Graham, B. Günther, U. Heiden, J. Ickes, G. Kerr, U. Knodt, D. Krutz, H. Krawczyk, A. Makarau, R. Miller, R. Perkins, and I. Walter
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 461–467, https://doi.org/10.5194/isprs-archives-XLI-B1-461-2016,https://doi.org/10.5194/isprs-archives-XLI-B1-461-2016, 2016
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                TOWARDS FAST MORPHOLOGICAL MOSAICKING OF HIGH-RESOLUTION MULTI-SPECTRAL PRODUCTS – ON IMPROVEMENTS OF SEAMLINES
                                Tobias Storch, Peter Fischer, Sebastian Fast, Philipp Serr, Thomas Krauß, and Rupert Müller
                                    ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-1, 91–98, https://doi.org/10.5194/isprs-annals-III-1-91-2016,https://doi.org/10.5194/isprs-annals-III-1-91-2016, 2016