The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-2/W17
https://doi.org/10.5194/isprs-archives-XLII-2-W17-53-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W17-53-2019
29 Nov 2019
 | 29 Nov 2019

BIM RECONSTRUCTION: AUTOMATED PROCEDURAL MODELING FROM POINT CLOUD DATA

M. Bassier, L. Mattheuwsen, and M. Vergauwen

Keywords: Building Information Modeling, Reconstruction, Walls, Building, Point Clouds

Abstract. The reconstruction of Building Information Modeling objects for as-built modeling is currently the subject of ongoing research. A popular method is to extract structure information from point cloud data to create a set of parametric objects. This requires the interpretation of the point cloud data which currently is a manual and labor intensive procedure. Automated processes have to cope with excessive occlusions and clutter in the data sets. To create an as-built BIM, it is vital to reconstruct the building’s structure i.e. wall geometry prior to the reconstruction of other objects.

In this work, a novel method is presented to automatically reconstruct as-built BIM for generic buildings. We presented an unsupervised method that procedurally models the geometry of the walls based on point cloud data. A bottom-up process is defined where consecutively higher level information is extracted from the point cloud data using pre-trained machine learning models. Prior to the reconstruction, the data is segmented, classified and clustered to retrieve all the available observations of the walls. The resulting geometry is processed by the reconstruction algorithm. First, the necessary information is extracted from the observations for the creation of parametric solid objects. Subsequently, the final walls are created by updating their topology. The method is tested on a variety of scenes and shows promising results to reliably and accurately create as-built models. The accuracy of the generated geometry is similar to the precision of expert modelers. A key advantage is that that the algorithm creates Revit and Rhino native objects which makes the geometry directly applicable to a wide range of applications.