The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-2/W7
https://doi.org/10.5194/isprs-archives-XLII-2-W7-149-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W7-149-2017
12 Sep 2017
 | 12 Sep 2017

A CASE STUDY: EXPLORING INDUSTRIAL AGGLOMERATION OF MANUFACTURING INDUSTRIES IN SHANGHAI USING DURANTON AND OVERMAN’S K-DENSITY FUNCTION

S. Tian, J. Wang, Z. Gui, H. Wu, and Y. Wang

Related authors

A submesoscale eddy identification dataset in the northwest Pacific Ocean derived from GOCI I chlorophyll a data based on deep learning
Yan Wang, Ge Chen, Jie Yang, Zhipeng Gui, and Dehua Peng
Earth Syst. Sci. Data, 16, 5737–5752, https://doi.org/10.5194/essd-16-5737-2024,https://doi.org/10.5194/essd-16-5737-2024, 2024
Short summary
Open Geospatial Engine: A Cloud-based Spatiotemporal Computing Platform
Xianyuan Zhang, Longgang Xiang, Peng Yue, Jianya Gong, and Huayi Wu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 453–459, https://doi.org/10.5194/isprs-annals-X-4-2024-453-2024,https://doi.org/10.5194/isprs-annals-X-4-2024-453-2024, 2024
AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023,https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Building a machine learning surrogate model for wildfire activities within a global Earth system model
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022,https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
DEVELOPING APACHE SPARK BASED RIPLEY’S K FUNCTIONS FOR ACCELERATING SPATIOTEMPORAL POINT PATTERN ANALYSIS
Z. Gui, Y. Wang, Z. Cui, D. Peng, J. Wu, Z. Ma, S. Luo, and H. Wu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 545–552, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020,https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020, 2020