The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-2/W7
https://doi.org/10.5194/isprs-archives-XLII-2-W7-469-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W7-469-2017
12 Sep 2017
 | 12 Sep 2017

PHYSICAL SEISMIC VULNERABILITY ASSESSMENT OF TEHRAN USING THE INTEGRATION OF GRANULAR COMPUTING AND INTERVAL DEMPSTER- SHAFER

M. R. Delavar, M. Bahrami, and M. Zare

Keywords: Uncertainty, Granular Computing, Interval Mathematics, Interval Dempster-Shafer, Physical Seismic Vulnerability Assessment , Multi Criteria Decision Making

Abstract. Several faults exist in the vicinity of Tehran, the capital of Iran such as North Tehran, Ray, Mosha and Kahrizak. One way to assist reducing the damage caused by the earthquake is the production of a seismic vulnerability map. The study area in this research is Tehran, based on the assumption of the activation of North Tehran fault. Degree of Physical seismic vulnerability caused by the earthquake depends on a number of criteria. In this study the intensity of the earthquake, land slope, numbers of buildings’ floors as well as their materials are considered as the effective parameters. Hence, the production of the seismic vulnerability map is a multi criteria issue. In this problem, the main source of uncertainty is related to the experts’ opinions regarding the seismic vulnerability of Tehran statistical units. The main objectives of this study are to exploit opinions of the experts, undertaking interval computation and interval Dempster-Shafer combination rule to reduce the uncertainty in the opinions of the experts and customizing granular computing to extract the rules and to produce Tehran physical seismic vulnerability map with a higher confidence. Among 3174 statistical units of Tehran, 150 units were randomly selected and using interval computation, their physical vulnerabilities were determined by the experts in earthquake-related fields. After the fusion of the experts’ opinions using interval Dempster-Shafer, the information table is prepared as the input to granular computing and then rules are extracted with minimum inconsistency. Finally, the seismic physical vulnerability map of Tehran was produced with % 72 accuracy.