The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-2
https://doi.org/10.5194/isprs-archives-XLII-2-691-2018
https://doi.org/10.5194/isprs-archives-XLII-2-691-2018
30 May 2018
 | 30 May 2018

MULTITEMPORAL ANALYSIS OF OBJECTS IN 3D POINT CLOUDS FOR LANDSLIDE MONITORING

A. Mayr, M. Rutzinger, and C. Geitner

Keywords: Topographic LiDAR, Terrestrial Laser Scanning, Change Detection, Object-based Analysis, Geomorphology, Erosion

Abstract. To date multi-temporal 3D point clouds from close-range sensing are used for landslide and erosion monitoring in an operational manner. Morphological changes are typically derived by calculating distances between points from different acquisition epochs. The identification of the underlying processes resulting in surface changes, however, is often challenging, for example due to the complex surface structures and influences from seasonal vegetation dynamics. We present an approach for object-based 3D landslide monitoring based on topographic LiDAR point cloud time series separating specific surface change types automatically. The workflow removes vegetation and relates surface changes derived from a point cloud time series directly to (i) geomorphological object classes (landslide scarp, eroded area, deposit) and (ii) to individual, spatially contiguous objects (such as parts of the landslide scarp and clods of material moving in the landslide). We apply this approach to a time series of nine point cloud epochs from a slope affected by two shallow landslides. A parameter test addresses the influence of the registration error and the associated level of detection on the magnitude of derived object changes. The results of our case study are in accordance with field observations at the test site as well as conceptual landslide models, where retrogressive erosion of the scarp and downslope movement of the sliding mass are major principles of secondary landslide development. We conclude that the presented methods are well suited to extract information on geomorphological process dynamics from the complex point clouds and aggregate it at different levels of abstraction to assist landslide and erosion assessment.