The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-4/W4
https://doi.org/10.5194/isprs-archives-XLII-4-W4-97-2017
https://doi.org/10.5194/isprs-archives-XLII-4-W4-97-2017
26 Sep 2017
 | 26 Sep 2017

LEAST SQUARE APPROACH FOR ESTIMATING OF LAND SURFACE TEMPERATURE FROM LANDSAT-8 SATELLITE DATA USING RADIATIVE TRANSFER EQUATION

Y. Jouybari-Moghaddam, M. R. Saradjian, and A. M. Forati

Keywords: Land Surface Temperature (LST); Landsat-8; Radiative Transfer Equation (RTE); Thermal Infrared

Abstract. Land Surface Temperature (LST) is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE). However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11) and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI) and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE) is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.