PARTICLE SWARM OPTIMIZATION BASED APPROACH TO ESTIMATE EPIPOLAR GEOMETRY FOR REMOTELY SENSED STEREO IMAGES
Keywords: Fundamental Matrix, Particle Swarm Optimization, Epipolar Geometry, Remote Sensing, Random Sample Consensus, Stereo Vision
Abstract. A novel particle swarm optimization based approach for the estimation of epipolar geometry for remotely sensed images is proposed and implemented in this work. In stereo vision, epipolar geometry is described using 3 × 3 fundamental matrix and is used as a validation tool to assess the accuracy of the stereo correspondences. The validation is performed by enforcing the geometrical constraint of stereo images on the two perspective projections of a point in the scene for finding inliers. In the proposed method, the steps of particle swarm optimization such as the initialization of the position and velocity of the particles, the objective function to compute the best position found by the swarm as well as by each particle experienced so far, the updating rule of velocity for the improvement of the position of each particle, is designed and implemented to estimate the fundamental matrix. To demonstrate the effectiveness of the proposed approach, the results are obtained on a pair of remotely sensed stereo image. A comparison of the result obtained using the proposed algorithm with RANSAC algorithm is carried out. The comparison shows that, the proposed method is effective to estimate robust fundamental matrix by giving improved number of inliers than RANSAC.