A SHORT-CUT CONNECTIONS-BASED NEURAL NETWORK FOR BUILDING EXTRACTION FROM HIGH RESOLUTION ORTHOIMAGERY
Keywords: Deep Learning, Building Extraction, Dilated Convolution, Short-cut Connections, High Resolution Orthoimagery
Abstract. Extracting building footprints utilizing deep learning-based (DL-based) methods for high-resolution remote sensing images is one of the current research interest areas. However, the extraction results suffer from blurred edges, rounded corners and detail loss in general. Hence, this article presents a detail-oriented deep learning network named eU-Net (enhanced U-Net). The method adopted in this study, imagery send into the pre-module, which consists of the Canny edge detector, Principal Component Analysis (PCA) and the inter-band ratio operations, before feeding them into the network. Then, process skips connections used in the network to reduce the loss of details during edge and corner detection. The encoding and decoding modules, in this network, are redesigned to expand the perceptual field with shortcut connections and stacked layers. Finally, a Dropout module is added in the bottom layer of the network to avoid the over-fitting problem. The experimental results indicate that the methods used in this study outperform other commonly used and state-of-the-art methods of FCN-8s, U-net, DeepLabv3 and Fast SCNN.