The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Articles | Volume XLIII-B2-2022
30 May 2022
 | 30 May 2022


M. Welponer, E. K. Stathopoulou, and F. Remondino

Keywords: monocular, depth prediction, 3D reconstruction, CNN, deep learning, photogrammetry

Abstract. Despite the recent success of learning-based monocular depth estimation algorithms and the release of large-scale datasets for training, the methods are limited to depth map prediction and still struggle to yield reliable results in the 3D space without additional scene cues. Indeed, although state-of-the-art approaches produce quality depth maps, they generally fail to recover the 3D structure of the scene robustly. This work explores supervised CNN architectures for monocular depth estimation and evaluates their potential in 3D reconstruction. Since most available datasets for training are not designed toward this goal and are limited to specific indoor scenarios, a new metric, large-scale synthetic benchmark (ArchDepth) is introduced that renders near real-world scenarios of outdoor scenes. A encoder-decoder architecture is used for training, and the generalization of the approach is evaluated via depth inference in unseen views in synthetic and real-world scenarios. The depth map predictions are also projected in the 3D space using a separate module. Results are qualitatively and quantitatively evaluated and compared with state-of-the-art algorithms for single image 3D scene recovery.