Large-Scale 3D Terrain Reconstruction Using 3D Gaussian Splatting for Visualization and Simulation
Keywords: 3D Gaussian Splatting, Large-scale Terrain Reconstruction, 3D Visualization, Game Development, Simulation
Abstract. The fusion of low-cost unmanned aerial systems (UAS) with advanced photogrammetric techniques has revolutionized 3D terrain reconstruction, enabling the automated creation of detailed models. Concurrently, the advent of 3D Gaussian Splatting has introduced a paradigm shift in 3D data representation, offering visually realistic renditions distinct from traditional polygon-based models. Our research builds upon this foundation, aiming to integrate Gaussian Splatting into interactive simulations for immersive virtual environments. We address challenges such as collision detection by adopting a hybrid approach, combining Gaussian Splatting with photogrammetry-derived meshes. Through comprehensive experimentation covering varying terrain sizes and Gaussian densities, we evaluate scalability, performance, and limitations. Our findings contribute to advancing the use of advanced computer graphics techniques for enhanced 3D terrain visualization and simulation.