The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLVIII-2/W2-2022
https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-61-2022
https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-61-2022
08 Dec 2022
 | 08 Dec 2022

AN APPROACH TO SUBPIXEL ACCURACY WIDENING CRACK WIDTH DETERMINATION IN IMAGE SEQUENCES

F. Liebold and H.-G. Maas

Keywords: Deformation Measurement, Crack Detection, Crack Analysis, Image Sequence Analysis, Digital Image Correlation

Abstract. As an extension to existing work on crack detection and subpixel accuracy crack width determination as a tool for civil engineering material testing, the paper shows an algorithmic approach to handle widening cracks with relative rotations between related crack borders. In the first time step under zero-load, a set of points to be tracked through consecutive frames of an image sequence is defined. Then, subpixel-precise displacement fields are computed for the image data of the following time steps using an 8-parameter least-squares matching approach. The points are triangulated into a mesh, and the changes of the inner geometry of the triangles are considered with a mathematical model assuming a split of each triangle. With this model, subpixel-precise deformation vectors are derived. Crack candidates are determined by a thresholding applied to the vectors’ lengths. After an estimation of the crack normal, a decomposition of the deformation vectors is applied, allowing to compute crack widths and shear movements. As a novel contribution to the technique, a model extension is proposed for the case of a relative rotation between the crack borders in order to reduce systematic errors. The model includes two separate rigid transformations for each crack side.