The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Download
Citation
Articles | Volume XLVIII-4/W3-2022
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-149-2022
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-149-2022
02 Dec 2022
 | 02 Dec 2022

VOXELIZATION TECHNIQUES: DATA SEGMENTATION AND DATA MODELLING FOR 3D BUILDING MODELS

N. Ridzuan, U. Ujang, S. Azri, I. Mohamad Yusoff, and T. L. Choon

Keywords: 3D Building Models, Voxelization, Data Segmentation, Data Modelling, Point Cloud

Abstract. Voxelization of data is discretizing the 3D space, in which the simplest form is a single voxel. There is a large number of publications that are related to voxelization. However, this paper focuses on the voxelization technique implemented in 3D building modelling. This paper aims to get the development idea of the voxelization technique throughout these past years to determine the suitable technique and method for including a 3D voxelized building model in Computational Fluid Dynamics (CFD). From the search and analysis, it is found that this technique is not only related to data modelling of the 3D voxelized model; the voxelization technique can also be utilized in the data segmentation process. First, for the data segmentation, the voxelization technique is implemented to manage the large amount of point cloud data that were obtained from the 3D scanner and sensors, which is done by reducing the number of data to avoid data redundancy and unused data using each of the voxels that exist in that environment. Second, for data modelling, popular input data to generate the 3D voxelized model is also in the form of a point cloud. However, there are still other forms, such as line and surface. Nevertheless, this paper reviews the voxelized technique in building modelling despite some data segmentation. The review shows various input data, applications, and techniques associated with the voxelization process based on building model generation. However, there is still room for improvement that allows the 3D model to be modelled in the voxelized form in the CFD domain.