The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Download
Citation
Articles | Volume XXXIX-B7
https://doi.org/10.5194/isprsarchives-XXXIX-B7-197-2012
https://doi.org/10.5194/isprsarchives-XXXIX-B7-197-2012
31 Jul 2012
 | 31 Jul 2012

OPTIMIZATION OF DECISION-MAKING FOR SPATIAL SAMPLING IN THE NORTH CHINA PLAIN, BASED ON REMOTE-SENSING A PRIORI KNOWLEDGE

J. Feng, L. Bai, S. Liu, X. Su, and H. Hu

Keywords: Agricultural Spatial Sampling, Remote Sensing, a Priori Knowledge, Spatial Structure Characteristics, RIP(s)/RIV(s), Sampling efficiency

Abstract. In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.