REGION BASED FOREST CHANGE DETECTION FROM CARTOSAT-1 STEREO IMAGERY
Keywords: Change detection, Forest, DSM, GLCM
Abstract. Tree height is a fundamental parameter for describing the forest situation and changes. The latest development of automatic Digital Surface Model (DSM) generation techniques allows new approaches of forest change detection from satellite stereo imagery. This paper shows how DSMs can support the change detection in forest area. A novel region based forest change detection method is proposed using single-channel CARTOSAT-1 stereo imagery. In the first step, DSMs from two dates are generated based on automatic matching technology. After co-registration and normalising by using LiDAR data, the mean-shift segmentation is applied to the original pan images, and the images of both dates are classified to forest and non-forest areas by analysing their histograms and height differences. In the second step, a rough forest change detection map is generated based on the comparison of the two forest map. Then the GLCM texture from the nDSM and the Cartosat-1 images of the resulting regions are analyzed and compared, the real changes are extracted by SVM based classification.