The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XL-3
https://doi.org/10.5194/isprsarchives-XL-3-107-2014
https://doi.org/10.5194/isprsarchives-XL-3-107-2014
11 Aug 2014
 | 11 Aug 2014

Global-scale object detection using satellite imagery

R. Hamid, S. O'Hara, and M. Tabb

Keywords: Object Detection, Large-Scale Learning, High-Dimensional Image Codes, Crowd-Sourced Training Labels

Abstract. In recent years, there has been a substantial increase in the availability of high-resolution commercial satellite imagery, enabling a variety of new remote-sensing applications. One of the main challenges for these applications is the accurate and efficient extraction of semantic information from satellite imagery. In this work, we investigate an important instance of this class of challenges which involves automatic detection of multiple objects in satellite images. We present a system for large-scale object training and detection, leveraging recent advances in feature representation and aggregation within the bag-of-words paradigm. Given the scale of the problem, one of the key challenges in learning object detectors is the acquisition and curation of labeled training data. We present a crowd-sourcing based framework that allows efficient acquisition of labeled training data, along with an iterative mechanism to overcome the label noise introduced by the crowd during the labeling process. To show the competence of the presented scheme, we show detection results over several object-classes using training data captured from close to 200 cities and tested over multiple geographic locations.