
 | 
20 Aug 2019
             
         
    MULTI-PURPOSE CHESTNUT CLUSTERS DETECTION USING DEEP LEARNING: A PRELIMINARY APPROACH 
        
            T. Adão, L. Pádua, T. M. Pinho, J. Hruška, A. Sousa, J. J. Sousa, R. Morais, and E. Peres
        
            
            
            
            
            
            
            
            
        Related authors
        
            
            
                    
                        
                            
                            
                            
                                     
                                POST-FIRE FORESTRY RECOVERY MONITORING USING HIGH-RESOLUTION MULTISPECTRAL IMAGERY FROM UNMANNED AERIAL VEHICLES
                                L. Pádua, T. Adão, N. Guimarães, A. Sousa, E. Peres, and J. J. Sousa
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W8, 301–305, https://doi.org/10.5194/isprs-archives-XLII-3-W8-301-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W8-301-2019, 2019
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                EVALUATION OF MACHINE LEARNING TECHNIQUES IN VINE LEAVES DISEASE DETECTION: A PRELIMINARY CASE STUDY ON FLAVESCENCE DORÉE
                                J. Hruška, T. Adão, L. Pádua, N. Guimarães, E. Peres, R. Morais, and J. J. Sousa
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W8, 151–156, https://doi.org/10.5194/isprs-archives-XLII-3-W8-151-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W8-151-2019, 2019
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                USING VIRTUAL SCENARIOS TO PRODUCE MACHINE LEARNABLE ENVIRONMENTS FOR WILDFIRE DETECTION AND SEGMENTATION
                                T. Adão, T. M. Pinho, L. Pádua, N. Santos, A. Sousa, J. J. Sousa, and E. Peres
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W8, 9–15, https://doi.org/10.5194/isprs-archives-XLII-3-W8-9-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W8-9-2019, 2019
                             
                            
                            
                         
                     
             
    
            
                    
                        
                            
                            
                            
                                     
                                POST-FIRE FORESTRY RECOVERY MONITORING USING HIGH-RESOLUTION MULTISPECTRAL IMAGERY FROM UNMANNED AERIAL VEHICLES
                                L. Pádua, T. Adão, N. Guimarães, A. Sousa, E. Peres, and J. J. Sousa
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W8, 301–305, https://doi.org/10.5194/isprs-archives-XLII-3-W8-301-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W8-301-2019, 2019
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                EVALUATION OF MACHINE LEARNING TECHNIQUES IN VINE LEAVES DISEASE DETECTION: A PRELIMINARY CASE STUDY ON FLAVESCENCE DORÉE
                                J. Hruška, T. Adão, L. Pádua, N. Guimarães, E. Peres, R. Morais, and J. J. Sousa
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W8, 151–156, https://doi.org/10.5194/isprs-archives-XLII-3-W8-151-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W8-151-2019, 2019
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                USING VIRTUAL SCENARIOS TO PRODUCE MACHINE LEARNABLE ENVIRONMENTS FOR WILDFIRE DETECTION AND SEGMENTATION
                                T. Adão, T. M. Pinho, L. Pádua, N. Santos, A. Sousa, J. J. Sousa, and E. Peres
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W8, 9–15, https://doi.org/10.5194/isprs-archives-XLII-3-W8-9-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W8-9-2019, 2019