The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-3
https://doi.org/10.5194/isprs-archives-XLII-3-1447-2018
https://doi.org/10.5194/isprs-archives-XLII-3-1447-2018
30 Apr 2018
 | 30 Apr 2018

LANDSLIDE INVENTORY MAPPING FROM BITEMPORAL 10 m SENTINEL-2 IMAGES USING CHANGE DETECTION BASED MARKOV RANDOM FIELD

Y. Qin, P. Lu, and Z. Li

Keywords: Landslide Inventory Mapping, Change Detection, Normalized Difference Vegetation Index, Principal Component Analysis, Markov Random Field, Sentinel-2 Images

Abstract. Landslide inventory mapping is essential for hazard assessment and mitigation. In most previous studies, landslide mapping was achieved by visual interpretation of aerial photos and remote sensing images. However, such method is labor-intensive and time-consuming, especially over large areas. Although a number of semi-automatic landslide mapping methods have been proposed over the past few years, limitations remain in terms of their applicability over different study areas and data, and there is large room for improvement in terms of the accuracy and automation degree. For these reasons, we developed a change detection-based Markov Random Field (CDMRF) method for landslide inventory mapping. The proposed method mainly includes two steps: 1) change detection-based multi-threshold for training samples generation and 2) MRF for landslide inventory mapping. Compared with the previous methods, the proposed method in this study has three advantages: 1) it combines multiple image difference techniques with multi-threshold method to generate reliable training samples; 2) it takes the spectral characteristics of landslides into account; and 3) it is highly automatic with little parameter tuning. The proposed method was applied for regional landslides mapping from 10 m Sentinel-2 images in Western China. Results corroborated the effectiveness and applicability of the proposed method especially the capability of rapid landslide mapping. Some directions for future research are offered. This study to our knowledge is the first attempt to map landslides from free and medium resolution satellite (i.e., Sentinel-2) images in China.