The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Articles | Volume XLII-3
30 Apr 2018
 | 30 Apr 2018


R. Saini and S. K. Ghosh

Keywords: Vegetation mapping, Sentinel-2, Landsat-8 OLI, Random Forest, Maximum Likelihood Classifier

Abstract. Accurate vegetation mapping is essential for monitoring crop and sustainable agricultural practice. This study aims to explore the capabilities of Sentinel-2 data over Landsat-8 Operational Land Imager (OLI) data for vegetation mapping. Two combination of Sentinel-2 dataset have been considered, first combination is 4-band dataset at 10m resolution which consists of NIR, R, G and B bands, while second combination is generated by stacking 4 bands having 10 m resolution along with other six sharpened bands using Gram-Schmidt algorithm. For Landsat-8 OLI dataset, six multispectral bands have been pan-sharpened to have a spatial resolution of 15 m using Gram-Schmidt algorithm. Random Forest (RF) and Maximum Likelihood classifier (MLC) have been selected for classification of images. It is found that, overall accuracy achieved by RF for 4-band, 10-band dataset of Sentinel-2 and Landsat-8 OLI are 88.38 %, 90.05 % and 86.68 % respectively. While, MLC give an overall accuracy of 85.12 %, 87.14 % and 83.56 % for 4-band, 10-band Sentinel and Landsat-8 OLI respectively. Results shown that 10-band Sentinel-2 dataset gives highest accuracy and shows a rise of 3.37 % for RF and 3.58 % for MLC compared to Landsat-8 OLI. However, all the classes show significant improvement in accuracy but a major rise in accuracy is observed for Sugarcane, Wheat and Fodder for Sentinel 10-band imagery. This study substantiates the fact that Sentinel-2 data can be utilized for mapping of vegetation with a good degree of accuracy when compared to Landsat-8 OLI specifically when objective is to map a sub class of vegetation.