The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLIII-B1-2021
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-203-2021
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-203-2021
28 Jun 2021
 | 28 Jun 2021

MAPPING BARLEY LODGING WITH UAS MULTISPECTRAL IMAGERY AND MACHINE LEARNING

O. Vlachopoulos, B. Leblon, J. Wang, A. Haddadi, A. LaRocque, and G. Patterson

Keywords: UAS, UAV, Machine learning, Image processing, Multispectral, Precision agriculture, Random Forests, Lodging

Abstract. Unmanned Aircraft Systems (UAS) are demonstrated cost- and time-effective remote sensing platforms for precision agriculture applications and crop damage monitoring. In this study, lodging damage on barley crops has been mapped from UAS imagery that was acquired over multiple barley fields with extensive lodging damages in two aerial surveys. A Random Forests classification model was trained and tested for the discrimination of lodged barley with an overall accuracy of 99.7% on the validation dataset. The crop areas with lodging were automatically delineated by vector analysis and compared to manually delineated areas using two spatial accuracy metrics, the Area Goodness of Fit (AGoF) and the Boundary Mean Positional Error (BMPE). The average AGoF was 97.95% and the average BMPE was 0.235 m.