The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLIII-B1-2021
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-39-2021
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-39-2021
28 Jun 2021
 | 28 Jun 2021

A CAPSNETS APPROACH TO PAVEMENT CRACK DETECTION USING MOBILE LASER SCANNNING POINT CLOUDS

W. Zhu, W. Tan, L. Ma, D. Zhang, J. Li, and M. A. Chapman

Keywords: CapsNets, Crack Detection, Pavement Inspection, Mobile Laser Scanning, Point Cloud

Abstract. Routine pavement inspection is crucial to keep roads safe and reduce traffic accidents. However, traditional practices in pavement inspection are labour-intensive and time-consuming. Mobile laser scanning (MLS) has proven a rapid way for collecting a large number of highly dense point clouds covering roadway surfaces. Handling a huge amount of unstructured point clouds is still a very challenging task. In this paper, we propose an effective approach for pavement crack detection using MLS point clouds. Road surface points are first converted into intensity images to improve processing efficiency. Then, a Capsule Neural Network (CapsNet) is developed to classify the road points for pavement crack detection. Quantitative evaluation results showed that our method achieved the recall, precision, and F1-score of 95.3%, 81.1%, and 88.2% in the testing scene, respectively, which demonstrated the proposed CapsNet framework can accurately and robustly detect pavement cracks in complex urban road environments.