The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLIII-B3-2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-447-2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-447-2020
21 Aug 2020
 | 21 Aug 2020

A SIMPLE ARTIFICIAL NEURAL NETWORK FOR FIRE DETECTION USING LANDSAT-8 DATA

Z. Liu, K. Wu, R. Jiang, and H. Zhang

Keywords: Fire Detection, Artificial Neural Network, Fixed Threshold, Landsat-8, Remote Sensing Image Classification

Abstract. Fixed threshold models have been widely used in active fire detection products. However, its accuracy is limited due to the complexity of setting up thresholds. Artificial neural network (ANN) is capable of learning from data and can decide weights automatically. Given enough data, an ANN model is able to optimize itself and quickly find an optimal solution. In this work, a simple ANN model is implemented to classify fire pixels from Landsat-8 data. Experimental results show that our ANN model effectively achieves fire detection and performs better than fixed threshold model in certain circumstances.