|
30 May 2022
INTEGRATING INSAR INFORMATION AND SPATIAL-TEMPORAL FACTORS IN MACHINE LEARNING ANALYSIS FOR LANDSLIDE PREDICTION – A CASE STUDY FOR PROVINCIAL HIGHWAY 18 AREA IN TAIWAN
Y. K. Chen, Y. T. Lin, H. Y. Yen, N. H. Chang, H. M. Lin, K. H. Yang, C. S. Chen, L. P. Wang, H. K. Cheng, H. H. Wu, and J. Y. Han
Related authors
Modelling rainfall with a Bartlett-Lewis process: pyBL (v1.0.0), a Python software package and an application with short records
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1918,https://doi.org/10.5194/egusphere-2024-1918, 2024
Short summary
Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Susana Ochoa-Rodriguez, Patrick Willems, Abdellah Ichiba, Li-Pen Wang, Rui Pina, Johan Van Assel, Guendalina Bruni, Damian Murla Tuyls, and Marie-Claire ten Veldhuis
Hydrol. Earth Syst. Sci., 21, 2361–2375, https://doi.org/10.5194/hess-21-2361-2017,https://doi.org/10.5194/hess-21-2361-2017, 2017
Short summary