|
30 May 2022
FUSING MULTIPLE UNTRAINED NETWORKS FOR HYPERSPECTRAL CHANGE DETECTION
S. Saha, J. Gawlikowski, and X. X. Zhu
Related authors
GRAPH NEURAL NETWORK BASED OPEN-SET DOMAIN ADAPTATION
S. Zhao, S. Saha, and X. X. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1407–1413, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1407-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1407-2022, 2022
FUSING MULTI-MODAL DATA FOR SUPERVISED CHANGE DETECTION
P. Ebel, S. Saha, and X. X. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 243–249, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-243-2021,https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-243-2021, 2021
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024,https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Towards Sustainable Urban Energy: A Robust Deep Learning Framework for Solar Potential Estimation
Weiyan Lin, Jiasong Zhu, Yuansheng Hua, Qingyu Li, Lichao Mou, and Xiao Xiang Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 371–378, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-371-2024,https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-371-2024, 2024
A high-resolution calving front data product for marine-terminating glaciers in Svalbard
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024,https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
TOWARDS LARGE-SCALE BUILDING ATTRIBUTE MAPPING USING CROWDSOURCED IMAGES: SCENE TEXT RECOGNITION ON FLICKR AND PROBLEMS TO BE SOLVED
Y. Sun, A. Kruspe, L. Meng, Y. Tian, E. J. Hoffmann, S. Auer, and X. X. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 225–232, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-225-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-225-2023, 2023
A PRELIMINARY COMPARISON OF TWO EXCLUSION MAPS FOR LARGE-SCALE FLOOD MAPPING USING SENTINEL-1 DATA
J. Zhao, F. Roth, B. Bauer-Marschallinger, W. Wagner, M. Chini, and X. X. Zhu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 911–918, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023,https://doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023, 2023
MDAS: a new multimodal benchmark dataset for remote sensing
Jingliang Hu, Rong Liu, Danfeng Hong, Andrés Camero, Jing Yao, Mathias Schneider, Franz Kurz, Karl Segl, and Xiao Xiang Zhu
Earth Syst. Sci. Data, 15, 113–131, https://doi.org/10.5194/essd-15-113-2023,https://doi.org/10.5194/essd-15-113-2023, 2023
Short summary
GRAPH NEURAL NETWORK BASED OPEN-SET DOMAIN ADAPTATION
S. Zhao, S. Saha, and X. X. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1407–1413, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1407-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1407-2022, 2022
EXPLORING CROSS-CITY SEMANTIC SEGMENTATION OF ALS POINT CLOUDS
Y. Xie, K. Schindler, J. Tian, and X. X. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 247–254, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-247-2021,https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-247-2021, 2021
FUSING MULTI-MODAL DATA FOR SUPERVISED CHANGE DETECTION
P. Ebel, S. Saha, and X. X. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 243–249, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-243-2021,https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-243-2021, 2021
SPATIAL-SPECTRAL MANIFOLD EMBEDDING OF HYPERSPECTRAL DATA
D. Hong, J. Yao, X. Wu, J. Chanussot, and X. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 423–428, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-423-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-423-2020, 2020
DETECTION OF UNDOCUMENTED BUILDINGS USING CONVOLUTIONAL NEURAL NETWORK AND OFFICIAL GEODATA
Q. Li, Y. Shi, S. Auer, R. Roschlaub, K. Möst, M. Schmitt, and X. X. Zhu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 517–524, https://doi.org/10.5194/isprs-annals-V-2-2020-517-2020,https://doi.org/10.5194/isprs-annals-V-2-2020-517-2020, 2020