
 | 
30 May 2022
             
         
    EVALUATING THE SEPARABILITY BETWEEN DRY TROPICAL FORESTS AND SAVANNA WOODLANDS IN THE BRAZILIAN SAVANNA USING LANDSAT DENSE IMAGE TIME SERIES AND ARTIFICIAL INTELLIGENCE 
        
            H. N. Bendini, L. M. G. Fonseca, B. M. Matosak, R. F. Mariano, R. F. Haidar, and D. M. Valeriano
        
            
            
            
            
            
            
        Related authors
        
            
            
                    
                        
                            
                            
                            
                                     
                                IRRIGATED AGRICULTURE MAPPING IN A SEMI-ARID REGION IN BRAZIL BASED ON THE USE OF SENTINEL-2 DATA AND RANDOM FOREST ALGORITHM
                                H. N. Bendini, L. M. G. Fonseca, C. A. Bertolini, R. F. Mariano, A. S. Fernandes Filho, T. H. Fontenelle, and D. A. C. Ferreira
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 33–39, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-33-2023,https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-33-2023, 2023
                             
                            
                            
                         
                     
                    
                    
                        
                            
                            
                            
                                     
                                COMBINING ENVIRONMENTAL AND LANDSAT ANALYSIS READY DATA FOR VEGETATION MAPPING: A CASE STUDY IN THE BRAZILIAN SAVANNA BIOME
                                H. N. Bendini, L. M. G. Fonseca, M. Schwieder, P. Rufin, T. S. Korting, A. Koumrouyan, and P. Hostert
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 953–960, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-953-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-953-2020, 2020
                             
                            
                            
                         
                     
                    
             
    
            
                    
                        
                            
                            
                            
                                     
                                SenForFlood: A New Global Dataset for Flooded Area Detection
                                Bruno Menini Matosak, Getachew Workineh Gella, and Stefan Lang
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-7-2025, 97–102, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-97-2025,https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-97-2025, 2025
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                IRRIGATED AGRICULTURE MAPPING IN A SEMI-ARID REGION IN BRAZIL BASED ON THE USE OF SENTINEL-2 DATA AND RANDOM FOREST ALGORITHM
                                H. N. Bendini, L. M. G. Fonseca, C. A. Bertolini, R. F. Mariano, A. S. Fernandes Filho, T. H. Fontenelle, and D. A. C. Ferreira
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 33–39, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-33-2023,https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-33-2023, 2023
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                DEFORESTATION MONITORING IN DIFFERENT BRAZILIAN BIOMES: CHALLENGES AND LESSONS
                                C. A. Almeida, D. M. Valeriano, L. Maurano, L. Vinhas, L. M. G. Fonseca, D. Silva, C. P. F. Santos, F. S. R. V. Martins, F. C. B. Lara, J. S. Maia, E. R. Profeta, L. O. Santos, F. C. O. Santos, and V. Ribeiro
                                    ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 47–52, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-47-2020,https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-47-2020, 2020
                             
                            
                            
                         
                     
                    
                    
                    
                    
                        
                            
                            
                            
                                     
                                COMBINING ENVIRONMENTAL AND LANDSAT ANALYSIS READY DATA FOR VEGETATION MAPPING: A CASE STUDY IN THE BRAZILIAN SAVANNA BIOME
                                H. N. Bendini, L. M. G. Fonseca, M. Schwieder, P. Rufin, T. S. Korting, A. Koumrouyan, and P. Hostert
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 953–960, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-953-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-953-2020, 2020
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                SEMANTIC SEGMENTATION OF BRAZILIAN SAVANNA VEGETATION USING HIGH SPATIAL RESOLUTION SATELLITE DATA AND U-NET
                                A. K. Neves, T. S. Körting, L. M. G. Fonseca, C. D. Girolamo Neto, D. Wittich, G. A. O. P. Costa, and C. Heipke
                                    ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 505–511, https://doi.org/10.5194/isprs-annals-V-3-2020-505-2020,https://doi.org/10.5194/isprs-annals-V-3-2020-505-2020, 2020