
 | 
24 Aug 2020
             
         
    CITY-SCALE TAXI DEMAND PREDICTION USING MULTISOURCE URBAN GEOSPATIAL DATA 
        
            J. Yan, L. Xiang, C. Wu, and H. Wu
        
            
            
            
            
        Related authors
        
            
            
    
            
                    
                    
                    
                        
                            
                            
                                     
                                AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics
                                Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
                                    Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023,https://doi.org/10.5194/gmd-16-869-2023, 2023
                                    Short summary
                                    
                             
                            
                         
                     
                    
                        
                            
                            
                                     
                                Building a machine learning surrogate model for wildfire activities within a global Earth system model
                                Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
                                    Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022,https://doi.org/10.5194/gmd-15-1899-2022, 2022
                                    Short summary
                                    
                             
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                DEVELOPING APACHE SPARK BASED RIPLEY’S K FUNCTIONS FOR ACCELERATING SPATIOTEMPORAL POINT PATTERN ANALYSIS
                                Z. Gui, Y. Wang, Z. Cui, D. Peng, J. Wu, Z. Ma, S. Luo, and H. Wu
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 545–552, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020,https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020, 2020
                             
                            
                            
                         
                     
                    
                    
                    
                    
                    
                    
                        
                            
                            
                            
                                     
                                DEVELOPING A CLOUD-BASED ONLINE GEOSPATIAL INFORMATION SHARING AND GEOPROCESSING PLATFORM TO FACILITATE COLLABORATIVE EDUCATION AND RESEARCH
                                Z. L. Yang, J. Cao, K. Hu, Z. P. Gui, H. Y. Wu, and L. You
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B6, 3–7, https://doi.org/10.5194/isprs-archives-XLI-B6-3-2016,https://doi.org/10.5194/isprs-archives-XLI-B6-3-2016, 2016
                             
                            
                            
                         
                     
                    
                        
                            
                            
                            
                                     
                                PROVIDING R-TREE SUPPORT FOR MONGODB
                                Longgang Xiang, Xiaotian Shao, and Dehao Wang
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 545–549, https://doi.org/10.5194/isprs-archives-XLI-B4-545-2016,https://doi.org/10.5194/isprs-archives-XLI-B4-545-2016, 2016