The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Share
Publications Copernicus
Download
Citation
Share
Articles | Volume XLVIII-2/W2-2022
https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022
https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022
08 Dec 2022
 | 08 Dec 2022

CHARACTERIZATION OF MORPHOLOGICAL SURFACE ACTIVITIES DERIVED FROM NEAR-CONTINUOUS TERRESTRIAL LIDAR TIME SERIES

D. Hulskemper, K. Anders, J. A. Á. Antolínez, M. Kuschnerus, B. Höfle, and R. Lindenbergh

Related authors

Unsupervised Deep Clustering on Spatiotemporal Objects Extracted from 4D Point Clouds for Automatic Identification of Topographic Processes in Natural Environments
Jiapan Wang and Katharina Anders
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 929–936, https://doi.org/10.5194/isprs-annals-X-G-2025-929-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-929-2025, 2025
Detection of honey bees (Apis mellifera) in hypertemporal LiDAR point cloud time series to extract bee activity zones and times
Jannik S. Meyer, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 583–590, https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025, 2025
Wind during terrestrial laser scanning of trees: Simulation-based assessment of effects on point cloud features and leaf-wood classification
William Albert, Hannah Weiser, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 25–32, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, 2025
Least-Squares-Based Deep Learning for Sentinel-2 Derived Bathymetry: A Case Study on Anegada’s Southern Coast
Yushan Liu, Alireza Amiri-Simkooei, Roderik Lindenbergh, and Mirjam Snellen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W10-2025, 169–176, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-169-2025,https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-169-2025, 2025
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary