SATELLITE DRIVEN ESTIMATION OF PRIMARY PRODUCTIVITY OF AGROECOSYSTEMS IN INDIA
Keywords: Earth observation, ecosystem modeling, gross primary productivity, SPOT-VEGETATION, agro-ecosystem
Abstract. Earth observation driven ecosystem modeling have played a major role in estimation of carbon budget components such as gross primary productivity (GPP) and net primary production (NPP) over terrestrial ecosystems, including agriculture. The present study therefore evaluate satellite-driven vegetation photosynthesis (VPM) model for GPP estimation over agro-ecosystems in India by using time series of the Normalized Difference Vegetation Index (NDVI) from SPOT-VEGETATION, cloud cover observation from MODIS, coarse-grid C3/C4 crop fraction and decadal grided databases of maximum and minimum temperatures. Parameterization of VPM parameters e.g. maximum light use efficiency (ε*) and Tscalar was done based on eddy-covariance measurements and literature survey. Incorporation of C3/C4 crop fraction is a modification to commonly used constant maximum LUE. Modeling results from VPM captured very well the geographical pattern of GPP and NPP over cropland in India. Well managed agro-ecosystems in Trans-Gangetic and upper Indo-Gangetic plains had the highest magnitude of GPP with peak GPP during kharif occurs in sugarcane-wheat system (western UP) and it occurs in rice-wheat system (Punjab) during Rabi season. Overall, croplands in these plains had more annual GPP (> 1000 g C m-2) and NPP (> 600 g C m-2) due to input-intensive cultivation. Desertic tracts of western Rajasthan showed the least GPP and NPP values. Country-level contribution of croplands to national GPP and NPP amounts to1.34 Pg C year-1 and 0.859 Pg C year-1, respectively. Modeled estimates of cropland NPP agrees well with ground-based estimates for north-western India (R2 = 0.63 and RMSE = 108 g C m-2). Future research will focus on evaluating the VPM model with medium resolution sensors such as AWiFS and MODIS for rice-wheat system and validating with eddy-covariance measurements.